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Abstract
Bubbles beneath turbulent free surfaces are ubiquitous in natural and engineering processes,
where predicting their size distribution is of fundamental importance. Examples include
air-sea gas exchange and bubble acoustics. The bubble size distribution 𝑁 (𝑎), where 𝑎 is
radius, is governed by the population balance equation (PBE), which has a term for each
mechanism that evolves the bubble population. We consider fragmentation, entrainment,
and degassing. These mechanisms are driven by turbulence near the surface, but predicting
free-surface turbulence (FST) is a challenge for models, e.g., Reynolds-averaged Navier-
Stokes (RANS). We use direct numerical simulation (DNS) to resolve FST. We show that
turbulent Froude numbers Fr2

𝑇 = 𝜀/𝑢rmsg > 0.1 delineate strong FST, where near-surface
turbulence is isotropic. We provide a robust definition of surface layer thickness 𝛿𝑠, which
collapses relevant metrics within the surface layer. For strong FST, free-surface effects are
restricted to the surface layer. Towards a surface layer model for RANS, we elucidate the
scaling of 𝛿𝑠 and energy flux into the surface layer.

While DNS resolves turbulence, measuring bubble evolution mechanisms is a challenge.
We develop Eulerian label advection (ELA) to provide accurate volume-conserving bubble
tracking regardless of evolution complexity. ELA allows the first direct measurement of
evolution mechanisms in DNS of FST. For fragmentation, we verify that it can be treated
as memoryless (assumed by the PBE) and quantify the timescale to reach 𝑁 (𝑎) ∝ 𝑎−10/3,
the equilibrium for fragmentation-dominated bubble populations. From DNS of multiple
FST flows, we show the large-bubble entrainment size distribution 𝐼 (𝑎) scales with Fr6

𝑇 and
𝑎−14/3, consistent with a mechanism we describe. We obtain the degassing rate 𝛬(𝑎), which
has turbulence-driven and buoyancy-driven regimes with different scalings. We find that
FST is degassing, not fragmentation, dominated, and derive the corresponding equilibrium
bubble population, 𝑁 (𝑎) = 𝐼 (𝑎)/𝛬(𝑎), which agrees with DNS measurements. Compared
to 𝑁 (𝑎) ∝ 𝑎−10/3, this distinct new equilibrium has two power-law regimes, fewer large
bubbles, and is very sensitive to Froude number.

The findings of this thesis contribute to fundamental understanding of strong FST and
the size distribution of bubbles within it, and help pave the way for modeling and application
of these flows.

Thesis Supervisor: Dick K.P. Yue
Title: Philip J. Solondz Professor of Engineering
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Chapter 1

Introduction

1.1 Air Entraining Bubbly Flows
Turbulence beneath an air water free surface is present in a large variety of natural and
engineered flows. In this configuration, the free surface is affected by both the disturbing
force of turbulence and the restoring force of gravity. Surface tension also acts as a restoring
force, but for sufficiently large scales its effect is negligible compared to gravity. The ratio
of the strength of turbulence to the strength of gravity defines a turbulent Froude number
(squared),

Fr2
𝑇 =

𝑢2
rms

g𝐿𝑇
, (1.1)

where 𝑢rms is the characteristic velocity of the turbulence, 𝐿𝑇 = 𝑢3
rms/𝜀 is the characteristic

length scale of the turbulence (where 𝜀 is the turbulent dissipation rate), and g is gravitational
acceleration. For small Fr2

𝑇 turbulence is suppressed by the restoring force of gravity, and
the free surface remains intact. For large Fr2

𝑇 turbulence overcomes gravity, and the free
surface is broken up (Brocchini & Peregrine, 2001a). A highly visible feature of large-Fr2

𝑇
free-surface flows is the creation of bubbles as the broken free surface entraps air, and these
flows are often referred to as self-aerating or (as we do here) air entraining. Figure 1-1
shows examples of air entraining free-surface flows, where the characteristic “white water”
indicates the presence of entrained air, i.e., bubbles.

1.1.1 Examples in nature and engineering
One air entraining flow of interest is breaking waves in the ocean (e.g., figure 1-1e). The
resulting bubbles significantly increase the total surface area of the interface between air
and water, promoting the exchange of gases, including CO2, between the ocean and the
atmosphere (Thorpe, 1982; Wallace & Wirick, 1992; Farmer et al., 1993; Melville, 1996).
Additionally, when the bubbles rise to the surface and burst, they create tiny droplets known
as sea spray aerosols, which have significant implications on weather prediction (Veron,
2015). Beneath the ocean surface, the bubbles have a significant effect on acoustics, through
both sound generation and propagation (Medwin & Beaky, 1989; Lamarre & Melville, 1991;
Deane et al., 2013).
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(a) Beckton STP, Activated Sludge Tank. John Ros-
tron, CC BY-SA 2.0

(b) Fast-moving waters of Orin Falls. NPS/Alyssa
Mattei

(c) USS Higgins (DDG 76) operates off the coast of
Haiti. U.S. Navy/Adrian White

(d) Bubbly wakes behind boats near Boston. The
author

(e) North Pacific storm waves as seen from the MV
Noble Star. NOAA

Figure 1-1: Examples of air entraining flow in (a) waste water treatment, (b) rivers, (c) ship wakes,
(d) boat wakes, and (e) ocean waves. The presence of “white water” indicates entrained air.
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Another air entraining flow is in shallow rivers/streams (e.g., figure 1-1b) and dam
spillways (Falvey & Ervine, 1988; Chanson, 1996). Here the turbulent boundary layer grows
until it reaches the free surface, which, if Fr2

𝑇 is large, causes air entrainment (Keller et al.,
1974; Wilhelms & Gulliver, 2005). Similar to breaking waves, the resulting bubbles promote
gas exchange, and here the focus is often on modeling dissolved oxygen to understand the
health of the river/stream (Gulliver & Rindels, 1993).

Air entraining flows are also common in engineering. When the goal is to increase
air-water gas exchange, flows can be designed to promote air entrainment, such as aeration
cascades in water treatment plants (Chanson, 1996). In other flows the goal is to prevent air
entrainment, for example liquid-metal nuclear reactors are designed to prevent entrainment
of the nodal gas barriers above the liquid metal (Patwardhan et al., 2012). Of particular
interest in this work is the air entraining flow around surface (or near-surface) vessels (e.g.,
figure 1-1c, d). The near-vessel air entrainment creates a prominent cloud of bubbles which
extends far into the wake (NDRC, 1946). The larger bubbles in the cloud rise to the surface
and create an observable surface slick, and the smaller bubbles make the bubbly wake
acoustically detectable far behind the vessel (Trevorrow et al., 1994). These features make
predicting the bubbly wake important to the design and operation of naval vessels.

We highlight that in all these examples the size distribution of bubbles is of critical
interest. For gas exchange one is interested in the surface area of the bubbles, and the ratio of
volume to surface area depends on bubble size. For acoustics, the scattering and absorption
properties of a bubble change significantly near its resonant frequency, which depends on
bubble size (Medwin & Clay, 1998).

1.1.2 Challenges predicting bubble size distributions
To enable prediction and analysis of systems which depend on bubbly free-surface flows, we
need numerical models which can predict the total volume and size distribution of bubbles
(Zabaleta et al., 2024). We see two main challenges that prevent current computational
fluid dynamics (CFD) tools from accurately predicting the bubble population. The first is
modeling turbulence near an air entraining free surface. Due to the large density differences
between air and water, closure models for this free-surface turbulence (FST) are a challenge
(Brocchini & Peregrine, 2001b; Hendrickson & Yue, 2019). Modeling FST is addressed in
Chapter 4.

The second challenge is modeling how the population of bubbles evolves in FST. There
is a huge difference between the large scales of the flow (e.g., the length of a ship O(100)
meters and the smallest bubbles in the flow, O(100) micrometers. This O(106) separation in
scales makes resolving individual bubbles impossible. For illustration, Castro et al. (2016)
estimate that a CFD simulation of a ship with a resolution sufficient to resolve individual
bubbles would require 10 quadrillion CPU cores, orders of magnitude more cores than
humanity has ever manufactured. Thus, for CFD of physical-scale bubbly flow, it is clear we
need statistical models of how bubble populations evolve in FST, as a function of the local
turbulence levels.

In the next section we discuss how the population balance equation (PBE) provides the
framework for statistical modeling of bubble evolution. The PBE has been implemented
in CFD (e.g. Castro & Carrica, 2013), but accurate bubble population predictions require
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Bubble Population
𝑁 (𝑎), 𝑉

Fragmentation
𝑆 𝑓 (𝑎), 0

Coalescence

Entrainment
𝐼 (𝑎), 𝑄𝐼

Degassing
𝐷 (𝑎), 𝑄𝐷

Dissolution

Figure 1-2: Illustration of the effect of the five physical mechanisms on the bubble population, in
terms of the bulk bubble size distribution 𝑁 (𝑎) (see (1.2) for definitions), and the total entrained
volume 𝑉 (see (1.8) for definitions). The rendering comes from DNS of an air entraining FST flow
(see §6.4 for details).

accurate models of each of the underlying physical mechanisms that evolve the bubble
populations. Some mechanisms, like bubble fragmentation in turbulence, are relatively
well understood; however, others, like entrainment by FST, are not. A persistent barrier to
understanding these mechanisms is that measuring the individual evolution mechanisms
is difficult. This is difficult in experiments where visual access is a challenge, and is even
difficult in direct numerical simulation (DNS), despite it providing direct access to the
turbulent flow field. In Chapter 3 we develop a new numerical tool to provide robust
measurement of individual evolution mechanisms in DNS, and in Chapters 5–7 we use it
to gain new insight into the mechanisms in FST and how they affect the overall bubble
population.

1.2 Population balance equation for statistical modeling
of bubble populations

The bubble population in a region of interest can be described by the bubble size distribution
𝑁 (𝑎) (dimensions [1/𝐿]), where 𝑁 (𝑎)𝛿𝑎 is defined to be the number of bubbles of effective
radius1 [𝑎, 𝑎 + 𝛿𝑎]. The evolution of 𝑁 (𝑎) is described by a Boltzmann-type PBE,

𝜕𝑁/𝜕𝑡 (𝑎) = 𝑆𝑑 (𝑎) + 𝑆 𝑓 (𝑎) + 𝑆𝑐 (𝑎) + 𝐼 (𝑎) − 𝐷 (𝑎) , (1.2)

with source terms (dimensions [1/𝐿𝑇]) describing each of the five physical mechanisms
that evolve the bubble population (Sporleder et al., 2012):

• 𝑆𝑑 (𝑎) Dissolution where air dissolves into the surrounding water.

1For non-spherical bubbles, the effective radius 𝑎 is based on the bubble’s volume 𝑣 through 𝑎 = (3𝑣/4𝜋)1/3.
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• 𝑆 𝑓 (𝑎) Fragmentation where turbulence breaks a bubble into multiple bubbles.
• 𝑆𝑐 (𝑎) Coalescence where multiple bubbles join into one.
• 𝐼 (𝑎) Entrainment where a bubble is created by entrapment of air at the free surface.
• 𝐷 (𝑎) Degassing where a bubble bursts at the free surface.

Figure 1-2 illustrates how these five mechanisms evolve the bubble population in air entraining
free-surface flow. The PBE describes the evolution of the statistical distribution of the bubble
population, so each of the physical processes are also described by a statistical distribution.
At a high level, one goal of this work is to elucidate these processes’ distributions and,
through (1.2), predict the resulting 𝑁 (𝑎).

1.2.1 Physical mechanisms not considered in this work
We start with the physical processes that will not be investigated in this work: dissolution and
coalescence. Avoiding the details from chemistry, we assume a velocity 𝑈dissolution which
characterizes the rate at which air dissolves into the surrounding water per unit interfacial
area. A bubble’s volume scales like ∝ 𝑎3 and interfacial area like ∝ 𝑎2, which leads to
a characteristic timescale 𝑇dissolution ∝ 𝑎/𝑈dissolution for dissolution to affect the size of a
bubble. We will consider bubble evolution of sufficiently large bubbles over sufficiently
short timescales 𝑇 such that 𝑇 ≪ 𝑇dissolution and the effect of dissolution is negligible. Using
bubbly ship wakes as an example, we are interested in the bubble evolution surrounding and
immediately behind ship (𝑇 ∼ 10 seconds), rather than far behind the where dissolution
becomes relevant (𝑇 ∼ 10 minutes) (Trevorrow et al., 1994). Our DNS models air and water
as immiscible (see Chapter 2), in effect setting𝑈dissolution = 0 exactly.

Coalescence happens when multiple bubbles collide and then merge. Therefore, the
frequency of coalescence is primarily a function of the density of bubbles. The density of
bubbles can be described by the void fraction, which gives the average proportion of volume
that is occupied by air (as opposed to water). We will consider bubble evolution in flows
with moderate void fractions such that coalescence does not significantly affect the bubble
population. To address very large void fractions, incorporating coalescence is an area for
future work (see §8.2).

1.2.2 Physical mechanisms considered in this work
For flows with negligible dissolution and coalescence, the bubble evolution is described by
the PBE

𝜕𝑁/𝜕𝑡 (𝑎) = 𝑆 𝑓 (𝑎) + 𝐼 (𝑎) − 𝐷 (𝑎) . (1.3)

Fragmentation, entrainment, and degassing will be the focus of Chapters 5, 6, and 7
respectively, and how they interact through (1.3) informs our understanding of 𝑁 (𝑎). To
describe their interactions, it is first useful to introduce how each of these terms are modeled.
Fragmentation can be split into two terms,

𝑆 𝑓 (𝑎) ≡ 𝑆+𝑓 (𝑎) − 𝑆−𝑓 (𝑎) , (1.4)

where 𝑆−𝑓 (𝑎) describes the destruction of bubbles of radius 𝑎 by fragmentation and 𝑆+𝑓 (𝑎) the
creation of bubbles of radius 𝑎 as daughters of the fragmentation of larger bubbles. For more
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details on the creation term see Chapter 5. For the destruction term, we model individual
fragmentation events as independent and memoryless (as verified in Chapter 5), in which
fragmentation is a Poisson process. This gives

𝑆−𝑓 (𝑎) = 𝛺(𝑎)𝑁 (𝑎) , (1.5)

where 𝛺(𝑎) is the fragmentation rate (dimensions [1/𝑇]). Similarly, if the degassing
statistics of individual bubbles are independent and memoryless, we can define a degassing
rate 𝛬(𝑎) (dimensions [1/𝑇]) and

𝐷 (𝑎) = 𝛬(𝑎)𝑁 (𝑎) . (1.6)

We can now split (1.3) into two groups

𝜕𝑁/𝜕𝑡 (𝑎) = [︁
𝐼 (𝑎) + 𝑆+𝑓 (𝑎)

]︁ − [︁
𝛬(𝑎) + 𝛺(𝑎)]︁𝑁 (𝑎) , (1.7)

where the first group is terms describing the creation of bubbles of radius 𝑎, and the second
group described destruction of bubbles of radius 𝑎. The destruction terms are linear with
𝑁 (𝑎).

1.2.3 Equilibrium and non-equilibrium bubble populations

In addition to 𝜕𝑁/𝜕𝑡 (𝑎) described by the PBE, it can also be useful to consider the change
in the total volume of bubbles, d𝑉/d𝑡 where 𝑉 = (4𝜋/3)

∫
𝑁 (𝑎)𝑎3 d𝑎. Integrating (1.3)

using the same bubble volume weighted integral,

d𝑉/d𝑡 = 𝑄 𝐼 −𝑄𝐷 , (1.8)

where 𝑄 𝐼 ≡ (4𝜋/3)
∫
𝐼 (𝑎)𝑎3 d𝑎 is the flux of air volume from above to beneath the free

surface (entrainment flux) and 𝑄𝐷 ≡ (4𝜋/3)
∫
𝐷 (𝑎)𝑎3 d𝑎 is the flux from beneath to above

the free surface (degassing flux). Fragmentation only moves air between bubble sizes, so it
does not contribute to d𝑉/d𝑡. As opposed to decaying bubble populations with negligible
entrainment (d𝑉/d𝑡 < 0) such as during the quiescent period of breaking waves (Deane &
Stokes, 2002) or in the far wake of a ship, our interest is the behavior of air entraining flows
where 𝑄 𝐼 is relevant (d𝑉/d𝑡 ≥ 0).

For air entraining flows, we can classify the bubble population as being in either a
non-equilibrium regime where d𝑉/d𝑡 > 0 and 𝜕𝑁/𝜕𝑡 (𝑎) ≠ 0, or an equilibrium regime
where d𝑉/d𝑡 = 0 and 𝜕𝑁/𝜕𝑡 (𝑎) = 0. In this work we obtain a new equilibrium solution
to the PBE, and, by elucidating the individual terms of (1.7), we also inform modeling of
non-equilibrium bubble populations.
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1.3 Equilibrium bubble populations in plunging breaking
waves

As discussed in §1.1, one flow where the bubble population is of interest is breaking waves
in the ocean. For breaking waves, Garrett et al. (2000) predicted that the population of
large bubbles follows 𝑁 (𝑎) ∝ 𝑎−10/3. “Large” refers to bubbles larger than the Hinze scale
𝑎𝐻 (Hinze, 1955). Deane & Stokes (2002) observed this −10/3 power law in laboratory
experiments of plunging breaking waves. Since then, it has been observed by many in both
laboratory experiments and numerical simulations of breaking waves (see review by Deike,
2022). In this section we review the modeling assumptions used by Garrett et al. (2000).
While the resulting 𝑁 (𝑎 > 𝑎𝐻) ∝ 𝑎−10/3 describes bubble populations beneath plunging
breaking waves, this work will show that this distribution does not apply universally to air
entraining flows (Chapter 7).

1.3.1 Derivation of -10/3 equilibrium solution
Garrett et al. (2000) consider a population of bubbles where very large bubbles are entrained
and then successively fragment into smaller and smaller bubbles. Garrett et al. (2000)
call this a fragmentation cascade and note analogies to the energy cascade description
of turbulence in the Kolmogorov inertial subrange. We can also describe fragmentation
cascades in terms of the PBE. Bubbles in the cascade (bubbles sized between the large
entrained bubbles and the Hinze scale) are only affected by fragmentation:

𝜕𝑁/𝜕𝑡 (𝑎) = 𝑆 𝑓 (𝑎) . (1.9)

At equilibrium 𝜕𝑁/𝜕𝑡 (𝑎) = 0 and, recalling (1.4), we have 0 = 𝑆+𝑓 (𝑎) − 𝑆−𝑓 (𝑎). In words, the
rate at which bubbles of radius 𝑎 are created as the daughters when larger bubbles fragment
is equal to the rate at which bubbles of radius 𝑎 fragment. With a model of fragmentation,
this can be solved to obtain the associated 𝑁 (𝑎).

Fragmentation is governed by the balance between the disturbing force of turbulence on
a bubble and the restoring force of surface tension. The ratio between the two is given by the
bubble Weber number

We𝐵 =
2𝜀2/3(2𝑎)5/3
(𝜎/𝜌𝑤) , (1.10)

where 𝜀 is the turbulent dissipation rate, 𝑎 is the radius of the parent bubble, 𝜎 is the surface-
tension coefficient, and 𝜌𝑤 the density of water. The Hinze scale is defined as the bubble
Weber number We𝐻 (and corresponding radius 𝑎𝐻) below which surface tension largely
prevents fragmentation (Hinze, 1955). For We𝐵 ≫ We𝐻 (i.e., 𝑎 ≫ 𝑎𝐻), fragmentation
is unaffected by surface tension, and (as a result of the scaling of turbulence within the
Kolmogorov inertial subrange) the fragmentation rate follows (Martínez-Bazán et al., 1999a)

𝛺(𝑎 ≫ 𝑎𝐻) ∝ 𝜀1/3𝑎−2/3 . (1.11)

This gives the destruction term, 𝑆−𝑓 (𝑎) = 𝛺(𝑎)𝑁 (𝑎). For the creation term, Garrett et al.
(2000) assume a simple model where all bubbles fragment into exactly 𝑚 identically sized
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daughters. This assumption gives 𝑆+𝑓 (𝑎) = 𝑚2/3𝛺(𝑚1/3𝑎)𝑁 (𝑚1/3𝑎) (see derivation by
Gaylo et al., 2021). If we assume a power-law solution to the large bubble population,

𝑁 (𝑎) ∝ 𝑎𝛽 for 𝑎 ≫ 𝑎𝐻 , (1.12)

then 0 = 𝑆+𝑓 (𝑎) − 𝑆−𝑓 (𝑎) simplifies to

0 = 𝛺(𝑎)𝑁 (𝑎) [︁𝑚𝛽/3+10/9 − 1
]︁

, (1.13)

which is solved by 𝛽 = −10/3.

1.3.2 Evaluation of modeling assumptions
The wide agreement on 𝛽 = −10/3 for plunging breaking waves (Deike, 2022) suggests that
Garrett et al. (2000) provide a good model of the bubble population in that flow. However,
we will show in this work that it does not apply universally to bubble populations in air
entraining flows. To start, we consider the assumptions that went into the derivation in
§1.3.1.

Fragmentation dominance

The key assumption in §1.3.1 is that fragmentation is dominant over degassing, 𝑆 𝑓 (𝑎) ≫
𝐷 (𝑎), leading to the simplified PBE (1.9). In Chapter 7 we will study air entraining FST
and show that it leads to a degassing-dominated bubble population where 𝑆 𝑓 (𝑎) ≪ 𝐷 (𝑎),
creating a distinct power law 𝛽 ≠ −10/3.

Locality in fragmentation cascades

There can only be a fragmentation cascade if the daughter bubbles of fragmentation are only
slightly smaller on average than the parent bubble, a property called locality (Chan et al.,
2021b). If bubble fragmentation were non-local, a fragmentation event of a parent bubble
𝑎 ≫ 𝑎𝐻 would often produce daughter bubbles of radii 𝑎 < 𝑎𝐻 , which would not further
fragment. In §1.3.1, by applying (1.11) to the creation and destruction term, we assumed
that it was possible for both daughter and parent to be larger than the Hinze scale (𝑎 ≫ 𝑎𝐻
and 𝑚1/3𝑎 ≫ 𝑎𝐻). This is where the assumption of locality enters.

Chan et al. (2021c) study the fragmentation cascade in simulations of plunging breaking
waves and measure locality, confirming that fragmentation is strongly local. In Chapter 5 we
study fragmentation in simulations of homogeneous isotropic turbulence and measure the
“speed” that air moves through the fragmentation cascade. We find this speed is finite, which
also confirms locality.

Entrainment only at large scales

In §1.3.1 we followed Garrett et al. (2000) and assumed that bubbles are entrained only at
some large scale, below which entrainment is negligible, 𝑆 𝑓 (𝑎) ≫ 𝐼 (𝑎). Gaylo et al. (2021)
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address the case where entrainment is not restrained to large bubbles. They consider the PBE

𝜕𝑁/𝜕𝑡 (𝑎) = 𝑆 𝑓 (𝑎) + 𝐼 (𝑎) , (1.14)

and assume a cut-off power law for the entrainment size distribution,

𝐼 (𝑎) ∝
{︄
𝑎𝛾 𝑎 < 𝑎max

0 otherwise
. (1.15)

Fragmentation is modeled the same as in §1.3.1. By solving (1.14) for 𝜕𝑁/𝜕𝑡 (𝑎) = 0, they
obtain the power law solution

𝛽 =
𝛾 + 4

1 − (𝑎max/𝑎)𝛾+4
− 10/3 , (1.16)

For 𝑎 ≪ 𝑎max, there are two regimes of fragmentation-dominated bubble populations based
on the entrainment power law 𝛾:

𝛽 =

{︄
−10/3 𝛾 ≥ −4
𝛾 + 2/3 𝛾 < −4

. (1.17)

For weak entrainment (𝛾 ≥ −4), most volume is entrained in the largest bubbles, and the
population still obtains 𝛽 = −10/3. For strong entrainment (𝛾 < −4), most volume is
entrained in the smallest bubbles and entrainment rather than the fragmentation cascade set 𝛽.
In Chapter 6 we show that entrainment of large bubbles in FST is strong (𝛾 = −14/3 implying
𝛽 = −4); however, we also find that degassing is dominant rather than fragmentation so
(1.17) does not apply.

1.4 Thesis Outline
While the equilibrium bubble size distribution is relatively well understood for super Hinze-
scale bubbles in plunging breaking waves (𝛽 = −10/3), section 1.1.1 illustrates that there are
many other air entraining free-surface flows where predicting the bubble size distribution is
of interest. Recent observations of different large-bubble power laws in simulations of the
wake behind a dry transom stern (𝛽 ∈ [−5,−4]) (Hendrickson et al., 2019) highlight that
𝛽 = −10/3 is not necessarily a universal description of bubble populations in air entraining
free-surface flows. The purpose of this work is the development of more general models
of bubble populations which, through the PBE (1.3), consider all the relevant physical
mechanisms in air entraining flow.

Different air entraining flows may have certain specific mechanisms driven by the
large-scale flow structure (e.g., entrapment of a cavity by a plunging breaking wave (Deike
et al., 2016; Chan et al., 2021a; Gao et al., 2021)); however, strong turbulence beneath
the free surface is a common feature of many air entraining flows Brocchini & Peregrine
(2001a). Thus, for generality, our focus will be on the mechanisms driven by this free-surface
turbulence (FST). Using direct numerical simulation (DNS) of air entraining FST, along
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with a new numerical measurement technique, we elucidate these mechanisms and how they
scale, particularly with turbulent Froude number Fr2

𝑇 . Using these insights, we discover a
new regime for the equilibrium bubble size distribution of super capillary-scale bubbles in
FST, which is quantitatively distinct from 𝛽 = −10/3 for plunging breaking waves.

The thesis is organized as follows,

• Chapter 2: Numerical Methods for Incompressible Turbulent Bubbly Flow

The numerical methods used to perform DNS of bubbly flow are reviewed. The governing
Navier-Stokes equations are introduced, and a second-order finite-volume solver, MPF-
Solver, is described. The conservative volume of fluid (cVOF) method (Weymouth & Yue,
2010) is described in detail, as the bubble tracking algorithm developed in Chapter 3 is
closely tied to cVOF. Also relevant to bubble tracking, the accuracy of different methods
for identifying and labeling bubbles is evaluated.

• Chapter 3: ELA Method for Volume-Conservative Bubble Tracking

A previous barrier to quantifying bubble evolution mechanisms is that they are difficult to
measure, even in DNS. To solve this, we develop Eulerian label advection (ELA) to track
the evolution of bubbles. As opposed to Lagrangian methods, the Eulerian nature makes
it robust, independent of the complexity of the bubble evolution. The method inherits
the volume-conservation of cVOF, meaning all air is tracked. The output of ELA is a
matrix-based description of bubble evolution, from which individual bubble evolution
mechanisms are easily accessible. ELA allows, for the first time, direct measurement of
bubble evolution mechanisms in air entraining FST (used in Chapter 5–7).

• Chapter 4: Characterizing the Surface Layer of Strong FST

The near-surface turbulence in air entraining FST is characterized. Fr2
𝑇 = 0.1 is found

to be the critical value above which gravity effects are weak enough for near-surface
turbulence to be nearly isotropic. For Fr2

𝑇 > 0.1 (strong FST), we show the effects of
the free surface are constrained to a surface layer of thickness 𝛿𝑠/𝐿𝑇 ∝ Fr2

𝑇 . We show
that, even at these large Fr2

𝑇 , the free surface is largely intact and (compared to bubbles
or droplets) dominates near-surface dynamics. Scaling by 𝛿𝑠 and turbulence properties
measured at the bottom of the surface layer collapses relevant turbulence metrics across a
wide range of Fr2

𝑇 . We discuss how these results inform reduced-order modeling of FST.

• Chapter 5: Bubble Fragmentation in HIT

The fragmentation term 𝑆 𝑓 (𝑎) is quantified using ELA in DNS of bubble fragmentation
in homogeneous isotropic turbulence (HIT). We identify three fundamental timescales
which characterize the statistics relevant to the PBE. In addition to the often-studied
bubble lifetime 𝜏ℓ, these are the relaxation time 𝜏𝑟 and convergence time 𝜏𝑐. We find
𝜏𝑟 ≪ 𝜏ℓ, which validates that fragmentation events can be modeled as independent
and memoryless, a core assumption of the PBE. 𝜏𝑐 provides the characteristic time for
fragmentation-dominated bubble populations to obtain the 𝛽 = −10/3 equilibrium solution
and provides a new constraint on fragmentation models.
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• Chapter 6: Bubble Entrainment in FST
Through a mechanistic argument, we obtain the entrainment size distribution 𝐼 (𝑎) for
large (super capillary scale) bubbles entrained by FST. We find that entrainment scales
with bubble radius 𝑎−14/3 and Fr6

𝑇 , independent from weak surface tension effects. The
sensitivity to Froude number is significantly stronger than previously thought (Yu et al.,
2020). We quantify 𝐼 (𝑎) using ELA in DNS of a flow which isolates entrainment by
FST, and a canonical free-surface shear flow, characteristic of the flow behind the transom
of a ship. In both flows, the agreement with our model is very strong (𝑅2 = 0.990 and
𝑅2 = 0.891 respectively). We also find evidence of 𝐼 (𝑎) ∝ 𝑎−14/3 in previous open channel
flow experiments (Wei et al., 2019), highlighting the generality of the FST entrainment
mechanism we describe.

• Chapter 7: Bubble Degassing in FST
Through a mechanistic argument, we obtain the degassing rate 𝛬(𝑎), which has two
regimes split by 𝑎𝛬. One where bubble rise is driven by turbulence (𝑎 < 𝑎𝛬) and one
where it is driven by buoyancy (𝑎 > 𝑎𝛬). We measure 𝛬(𝑎) using ELA in the same DNS
of free-surface shear flow as Chapter 6 and obtain a good agreement with our model
(𝑅2 = 0.761), including the regime change at 𝑎𝛬.
By quantifying degassing, we show that bubble populations in free-surface shear flow are
dominated by degassing rather than fragmentation (𝛬(𝑎) ≫ 𝛺(𝑎)). Through the PBE
(1.3), we show degassing dominance leads to an equilibrium solution 𝑁 (𝑎) = 𝐼 (𝑎)/𝛬(𝑎),
distinct from the solution discussed in section 1.3. Using the 𝐼 (𝑎) from Chapter 6
and 𝛬(𝑎) from this chapter, without introducing any additional fitting parameters, the
degassing-dominated bubble population we predict agrees well with the 𝑁 (𝑎) we measure
in the free-surface shear flow (𝑅2 = 0.849). The proprieties of the degassing-dominated
bubble population make it easily distinguishable from fragmentation-dominated bubble
populations.
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Chapter 2

Numerical Methods for Incompressible
Turbulent Bubbly Flow

The first two sections of this chapter describe MPFSolver, the numerical solver that is
used throughout this work to perform DNS of two-phase incompressible flows. Section 2.1
provides a general overview of the solver, and section 2.2 focuses on volume of fluid (VOF)
method used to capture the two phases (air and water). Finally, section 2.3 describes
methods for identifying connected regions of air, i.e., bubbles, based on the VOF description.
In addition to providing a description of how the simulations throughout this thesis are
performed, an aim of this chapter is to introduce the numerical concepts on which the new
bubble-tracking algorithm presented in Chapter 3 is built.

2.1 Direct numerical simulation

2.1.1 Governing equations

For the flows of interest in this work, it is assumed that both fluids are incompressible
Newtonian fluids. Noting that density 𝜌 and viscosity 𝜇 at a point in space depends on which
phase is present, the governing equation is the incompressible Navier-Stokes equation (N-S),
written in single-fluid form but with variable density and viscosity:

∇ · u = 0 , (2.1a)

𝜕u
𝜕𝑡
+ u · ∇u = −1

𝜌
∇𝑝 + 1

𝜌
∇ · 𝝉 − gê𝑧 + 𝜎𝜅𝛿𝑠n̂ + f , (2.1b)

where u is the fluid velocity, 𝑝 is the pressure, 𝝉 = 𝜇
(︁
∇u + ∇uT)︁ is viscous stress tensor, g

is gravitational acceleration (the positive-𝑧 direction is up), and f denotes any additional
applied forces (see section 2.1.5). For surface tension 𝜎 is the surface tension coefficient, 𝛿𝑠
is the interfacial Dirac delta function, n̂ is the interface normal vector, and 𝜅 is the interface
curvature.

For the flows of interest in this work, we will treat the two phases as immiscible. This
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means the mixture can be described by a binary field called the fluid color function,

𝑐(x, 𝑡) ≡
{︄

1 if x ∈ ‘dark’ fluid
0 if x ∈ ‘light’ fluid

. (2.2)

In incompressible flow the volume of each fluid is conserved, so the color function is also
conserved. This leads to a third governing equation,

𝜕𝑐

𝜕𝑡
+ u · ∇𝑐 = 0 . (2.3)

MPFSolver uses the convention that the ‘dark’ fluid is water and the ‘light’ fluid is air.
Based on the color function, we can express the density and viscosity as

𝜌 = 𝜌𝑎 (1 − 𝑐) + 𝜌𝑤𝑐 , (2.4a)

𝜇 = 𝜇𝑎 (1 − 𝑐) + 𝜇𝑤𝑐 . (2.4b)

Here 𝜌𝑤 and 𝜇𝑤 are the values for water and 𝜌𝑎 and 𝜇𝑎 are for air. We note that the choice
of which fluid is ‘dark’ versus ‘light‘ is arbitrary and all the numerical methods discussed
here are agnostic to this choice. In section 2.3 when describing bubble identification and
Chapter 3 when describing bubble tracking, it is more convenient to use the convention that
𝑐 = 1 is air and 𝑐 = 0 is water.

Without change of notation, we nondimensionalize the governing equations by a
characteristic velocity scale𝑈, length scale 𝐿, and the properties of water 𝜌𝑤 and 𝜇𝑤 . (2.1a)
and (2.3) remain unchanged, and (2.1b) becomes

𝜕u
𝜕𝑡
+ u · ∇u = −1

𝜌
∇𝑝 + 1

𝜌Re
∇ · 𝝉 − ê𝑧

Fr2 +
𝜅𝛿𝑠
We

n̂ + f , (2.5)

where nondimensionalized density and viscosity,

𝜌 = 𝜆(1 − 𝑐) + 𝑐 , (2.6a)

𝜇 = 𝜂(1 − 𝑐) + 𝑐 , (2.6b)

replace (2.4), with the ratios defined 𝜆 ≡ 𝜌𝑎/𝜌𝑤 and 𝜂 ≡ 𝜇𝑎/𝜇𝑤 . Unless otherwise noted, we
use 𝜆 = 0.00123 and 𝜂 = 0.0159, characteristic of air and water. In (2.5), the parameters that
describe a flow are Reynolds number Re = 𝑈𝐿/𝜈𝑤 (where 𝜈𝑤 = 𝜇𝑤/𝜌𝑤), Froude number
(squared) Fr2 = 𝑈2/g𝐿, and Weber number We = 𝑈2𝐿/(𝜎/𝜌𝑤).

For calculations, we separate the pressure into a pseudo hydrostatic component and a
pseudo dynamic component, 𝑝 = 𝑝ℎ + 𝑝𝑑 . The pseudo hydrostatic component is defined in
reference to the top of the domain in 𝑧,

𝑝ℎ (𝑥, 𝑦, 𝑧, 𝑡) ≡ 1
Fr2

∫ 𝑍𝑚𝑎𝑥

𝑧
𝜌(𝑥, 𝑦, 𝑧′, 𝑡) d𝑧′ . (2.7)

We say “pseudo” here because 𝜌 is a function of time so 𝑝ℎ is not actually static. Still, this
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separation is useful numerically because ∇𝑝ℎ cancels out the gravity term in the 𝑧-component
of (2.5) such that the remaining ∇𝑝𝑑 term does not have a strong anisotropy.

In summary, two-phase incompressible flow is described by velocity u, color function 𝑐,
and pseudo dynamic pressure 𝑝𝑑 and is governed by the three equations,

∇ · u = 0 , (2.8a)

𝜕𝑐

𝜕𝑡
+ u · ∇𝑐 = 0 , (2.8b)

𝜕u
𝜕𝑡

= − 1
𝜌[𝑐]∇𝑝𝑑 + fRHS [u, 𝑐] . (2.8c)

For conciseness, we group terms of (2.5) that will be treated explicitly into an acceleration
term fRHS which we note is a function of u and 𝑐. Density is a function only of 𝑐.

2.1.2 Temporal discretization

We use a two-stage Runge-Kutta method described by Dommermuth et al. (2004) to provide
a second-order in time discretization. For each stage, fRHS is found explicitly and a pressure
projection method is used to calculate 𝑝𝑑 . For a given velocity field u𝑘 and color function
field 𝑐𝑘 at time 𝑡𝑘 we seek the velocity field u𝑘+1 and color function field 𝑐𝑘+1 at time
𝑡𝑘+1 = 𝑡𝑘 + Δ𝑡. For the two-stage Runge-Kutta method, this is done over two iterations. For
the first iteration: a predictor step

u∗𝑘+1/2 = u𝑘 + Δ𝑡 fRHS
[︁
u𝑘 , 𝑐𝑘

]︁
; (2.9a)

accounts for the explicit terms; a Poisson equation

∇ ·

(︃
1

𝜌[𝑐𝑘 ]∇𝑝𝑑
𝑘+1/2

)︃
=

1
Δ𝑡

∇ · u∗𝑘+1/2 , (2.9b)

is solved to find a dynamic pressure 𝑝𝑑 𝑘+1/2 which enforces (2.8a); The velocity is corrected
by the new pressure

u𝑘+1/2 = u∗𝑘+1/2 − Δ𝑡 1
𝜌[𝑐𝑘 ]∇𝑝𝑑

𝑘+1/2 ; (2.9c)

and the color function is updated

𝑐𝑘+1/2 = 𝑐𝑉𝑂𝐹
[︁
u𝑘 , 𝑐𝑘

]︁
. (2.9d)

For the second iteration, the same steps are repeated:

u∗𝑘+1 =
u𝑘 + u𝑘+1/2

2
+ Δ𝑡

2
fRHS

[︁
u𝑘+1/2, 𝑐𝑘+1/2

]︁
, (2.10a)

∇ ·

(︃
1

𝜌[𝑐𝑘+1/2]∇𝑝𝑑
𝑘+1

)︃
=

2
Δ𝑡

∇ · u∗𝑘+1 , (2.10b)
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u𝑘+1 = u∗𝑘+1 − Δ𝑡
2

1
𝜌[𝑐𝑘+1/2]∇𝑝𝑑

𝑘+1 , (2.10c)

𝑐𝑘+1 = 𝑐𝑉𝑂𝐹

[︃
u𝑘 + u𝑘+1/2

2
, 𝑐𝑘

]︃
. (2.10d)

For (2.9d) and (2.10d), the (discretized) color function field is updated using the conservative
Volume of Fluid (cVOF) method (Weymouth & Yue, 2010), which is discussed in section 2.2.
Note that the pressure correction step is done before updating the color function field. This
ensures that the two terms on the right side of the momentum equation (2.8c) are calculated
using the same density field.

The time step Δ𝑡 is chosen dynamically based on the criteria described by Campbell
(2014, §5.3.4), with two exceptions. First, for the vicious criteria, we use

Δ𝑡 <
1
6

Re min [Δ𝑥𝑑]2 (𝜌/𝜇) (2.11)

where the constant 1/6 comes from Tryggvason et al. (2011, §3.1).1 The large difference in
𝜇 and 𝜌 between air and water coupled with numerical interpolation means that special care
must be taken with how 𝜌/𝜇 is calculated near fluid interfaces. In Appendix A we derive a
definition of 𝜈̃ = 𝜇/𝜌 which ensures (2.11) guarantees linear stability. Second, when surface
tension is modeled, an additional criteria,

Δ𝑡 <

√︂
1

8𝜋
We (𝜆 + 1) (min [Δ𝑥𝑑])3 , (2.12)

is also considered. Generally, we find the dynamic selection of Δ𝑡 is driven by the cVOF
Courant restriction,

Δ𝑡
𝒩∑︁
𝑑=1

|︁|︁|︁|︁ 𝑢𝑑Δ𝑥𝑑

|︁|︁|︁|︁ ≤ 𝐶 , (2.13)

where 𝒩 = 3 is the number of dimensions and 𝐶 = 1/2 (Weymouth & Yue, 2010).

2.1.3 Spatial discretization
We use a second-order finite-volume approach using the marker-and-cell (MAC) staggered-
grid method (Harlow & Welch, 1965), where scalar quantities are described at cell centers
and the velocity components are described at the respective cell-face centers. This is done
on three-dimensional Cartesian grids of size 𝑁𝑖 × 𝑁 𝑗 × 𝑁𝑘 . Figure 2-1 provides a two-
dimensional illustration of the MAC staggered grid. Following the standard finite-volume
approach, the integral of a quantity within a discrete control volume defines the cell-centered
value. For the color function field, this defines the VOF field,

𝑓𝑖 𝑗 𝑘 (𝑡) ≡
∫
𝛺𝑖 𝑗𝑘

𝑐(x, 𝑡) d𝑉

Δ𝛺𝑖 𝑗 𝑘
, (2.14)

1Campbell (2014) uses 3/14 intended for a two-step Adams-Bashforth scheme.
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(a)

𝑓𝑖−1, 𝑗−1

𝑓𝑖−1, 𝑗

𝑓𝑖−1, 𝑗+1

𝑓𝑖, 𝑗−1

𝑓𝑖, 𝑗

𝑓𝑖, 𝑗+1

𝑓𝑖+1, 𝑗−1

𝑓𝑖+1, 𝑗

𝑓𝑖+1, 𝑗+1

𝑓𝑖−1, 𝑗−1

𝑓𝑖−1, 𝑗

𝑓𝑖−1, 𝑗+1

𝑓𝑖, 𝑗−1

𝑓𝑖, 𝑗

𝑓𝑖, 𝑗+1

𝑓𝑖+1, 𝑗−1

𝑓𝑖+1, 𝑗

𝑓𝑖+1, 𝑗+1

(b)

𝑢𝑖−1/2, 𝑗−1

𝑢𝑖−1/2, 𝑗

𝑢𝑖−1/2, 𝑗+1

𝑢𝑖+1/2, 𝑗−1

𝑢𝑖+1/2, 𝑗

𝑢𝑖+1/2, 𝑗+1

(c)

𝑣𝑖−1, 𝑗−1/2 𝑣𝑖, 𝑗−1/2 𝑣𝑖+1, 𝑗−1/2

𝑣𝑖−1, 𝑗+1/2 𝑣𝑖, 𝑗+1/2 𝑣𝑖+1, 𝑗+1/2

Figure 2-1: Two-dimensional illustration of MAC staggered-grid mesh, where the dashed box
indicates the control volume for the: (a), pressure and VOF grid; (b), 𝑢-velocity grid; and (c),
𝑣-velocity grid.

where 𝛺𝑖 𝑗 𝑘 is the region of each cell in the density grid with volume Δ𝛺𝑖 𝑗 𝑘 ≡
∫
𝛺𝑖 𝑗𝑘

d𝑉 . Sec-
tion 2.2 discusses how careful integration of (2.8b) over 𝛺𝑖 𝑗 𝑘 obtains a volume-conservative
scheme to advance 𝑓 in time (Weymouth & Yue, 2010). Performing the same integration on
(2.6), we obtain the (non-dimensional) fluid properties for each cell in the density grid,

𝜌𝑖 𝑗 𝑘 = 𝜆(1 − 𝑓𝑖 𝑗 𝑘 ) + 𝑓𝑖 𝑗 𝑘 , (2.15a)

𝜇𝑖 𝑗 𝑘 = 𝜂(1 − 𝑓𝑖 𝑗 𝑘 ) + 𝑓𝑖 𝑗 𝑘 . (2.15b)

In some simulations it is useful to smooth the discontinuities in fluid properties, in which
case we use the filter described by Tryggvason et al. (2011, §7.1.4) to generate a smoothed
VOF field, 𝑓̃ 𝑖 𝑗 𝑘 , which is used in place of 𝑓𝑖 𝑗 𝑘 in (2.15).

For 𝑢, the velocity in the 𝑥-direction, the grid is staggered in 𝑥 (see figure 2-1). The
velocity at the center of this staggered control volume is

𝑢𝑘𝑖−1/2 𝑗 𝑘 =

∫
𝛺𝑖−1/2 𝑗𝑘

𝑢𝑘 (x) d𝑉

Δ𝛺𝑖−1/2 𝑗 𝑘
. (2.16)

The same can be defined for 𝑣, the velocity in the 𝑦 direction, and 𝑤, the velocity in the 𝑧
direction. By integrating over these cells and applying divergence theorem, discrete forms of
(2.9a), (2.9c), (2.10a), and (2.10c) can be derived that are second-order in space (Tryggvason
et al., 2011, Chapter 3). For the advection term in fRHS, we use the second-order centered
scheme.

For the viscous term in fRHS, a challenge for two-phase flow is calculating the viscosity.
The diagonal terms of 𝝉 need the cell centered value 𝜇𝑖 𝑗 𝑘 , which is easily available from MAC
using (2.15b). However, for the off-diagonal terms there is not a consistent second-order
method for two-phase flows using MAC (Tryggvason et al., 2011). Campbell (2014) uses
a harmonic mean approximation which is exact when the interface normal aligns with a
specified Cartesian axis; however, this approach cannot be applied to bubbly flows where the
interface normal can be in any orientation. Instead, we follow Yu (2019) and use a simple
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arithmetic mean,

𝜇𝑖+1/2 𝑗+1/2 𝑘 =
𝜇𝑖 𝑗 𝑘 + 𝜇𝑖+1 𝑗 𝑘 + 𝜇𝑖 𝑗+1 𝑘 + 𝜇𝑖+1 𝑗+1 𝑘

4
. (2.17)

The effect of this interpolation method on the viscous timestep restriction (2.11) is discussed
in Appendix A. Tryggvason et al. (2011) note that the arithmetic mean approach is more
robust than the harmonic mean, but, in effect, increases the viscosity in a region near the
interface.

For the surface tension term in fRHS, we use a continuous surface force method (Brackbill
et al., 1992), as implemented by Yu (2019). To calculate interface curvature, we first
interpolate the VOF field to the respective velocity grid. For each cell, we calculate the
interface height in the 3 × 3 stencil of neighboring cells perpendicular to the dominate
interface direction in that cell, as determined by interface reconstruction described in
section 2.2.1. For each cell in the stencil, we first attempt to calculate the interface height
using the forward and backward search described by Popinet (2009, Algorithm 4), but fall
back to a sum over 7 cells when this fails. Based on the 9 height functions in the 3× 3 stencil,
the curvature is calculated using a standard second-order finite-difference scheme (Francois
et al., 2006, eq. 33–36). Because we calculate curvature after interpolating the VOF field to
velocity grid, no interpolation of the curvature is necessary (cf. Francois et al., 2006, eq. 37).

Finally, we have (2.9b) and (2.10b) to calculate the pseudo dynamic pressure 𝑝𝑑 . We
highlight that this is the only step that is solved implicitly. Tryggvason et al. (2011) provide a
description of the discrete form of (2.9b) and (2.10b) for MAC as well as the accompanying
boundary conditions. The result is a variable coefficient Poisson equation, which we use
the hypre library2 (Falgout et al., 2006) to solve using the generalized minimal residual
(GMRES) method .

2.1.4 Minimum grid size
To accurately resolve the physics described by (2.1), it is essential that the grid size Δ is
small enough to capture the necessary scales.

Resolving turbulence

In this work, we directly model the flow without any turbulence closure models. This DNS
approach requires us to capture the smallest scale of turbulence, the Kolmogorov microscale,

𝜂𝑇 ∼ 𝜀−1/4Re−3/4 (2.18)

where 𝜀 is the turbulent dissipation rate. For MPFSolver, previous convergence studies by
Yu (2019) and an additional convergence study here focused specifically on bubble evolution
(see Appendix G) show that a grid size

𝜂𝑇/Δ > 1 (2.19)

2https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods
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is sufficient to resolve the turbulence and its effects on bubble evolution. While DNS fully
resolves turbulent flows described by N-S without any additional modeling, computational
limitations on the number of grid cells mean that, with current high-performance computing,
we are typically limited to Re ≲ 103.

Resolving surface tension

For simulations that include surface tension (finite We), the cell Weber number,

WeΔ =
𝑢2

rmsΔ
4𝜋(𝜎/𝜌𝑤) , (2.20)

estimates the ratio between the grid and the minimum characteristic radius of curvature of
an interface deformed by inertial turbulence. Popinet (2018) suggest

WeΔ ≲ 1 (2.21)

ensures surface tension forces are resolved by the grid. Alternatively, some compare the ratio
of the grid size to the Hinze scale 𝑎𝐻 ∝ 𝜀−2/5(𝜎/𝜌𝑤)3/5 (see (5.1) in Chapter 5) and suggest

Δ/𝑎𝐻 ≲ 1 . (2.22)

This ratio is related to (2.20) through

Δ/𝑎𝐻 ∝ We3/5
Δ (Δ/𝐿𝑇 )2/5 (2.23)

where 𝐿𝑇 = 𝑢3
rms/𝜀 is the characteristic length scale of the turbulence. The ratio of

𝐿𝑇/𝜂𝑇 ∝ Re3/4, meaning that, for a given Re, Δ/𝐿𝑇 in (2.22) is usually fixed by the
requirement to resolve the Kolmogorov scale (2.19). In practice, we find (2.22) is usually
redundant to (2.21).

2.1.5 Linear forcing
To simulate quasi-steady turbulence, it is necessary to inject energy into the flow to balance
the energy lost to heat through dissipation. A common method to do this is linear forcing
(Lundgren, 2003; Rosales & Meneveau, 2005). In (2.1b) we define a body force linearly
proportional to the turbulent fluctuations

f ≡ 𝐴u′′ , (2.24)

where, to guarantee the forcing does not impart a net change in momentum, u′′ is from Favre
averaging,

u′′ ≡ u − ⟨𝜌u⟩/⟨𝜌⟩ . (2.25)

With no mean flow (⟨𝜌u⟩ = 0), the turbulent kinetic energy (TKE) budget becomes

1
2

D⟨𝜌u · u⟩
D𝑡

= −⟨𝜌⟩𝜀 + ⟨𝐴𝜌u · u⟩ + production at domain boundaries . (2.26)
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𝜀 is the mean turbulent dissipation rate (units [𝐿2/𝑇3]),

𝜀 ≡ ⟨𝝉 : ∇u⟩ /⟨𝜌⟩ , (2.27)

To obtain quasi-steady turbulence, we want no (statistical) change in TKE. Assuming the
value of 𝐴 in (2.24) is a constant throughout the domain and that there is no TKE production
at the boundaries, the right side of (2.26) is made zero by

𝐴 = 𝜀/2𝑘̃ , (2.28)

where 𝑘̃ is the TKE density
𝑘̃ = 1

2 ⟨𝜌u · u⟩/⟨𝜌⟩ . (2.29)

In practice, 𝐴 can be either a fixed value, or can be calculated each time step based on a target
dissipation rate 𝜀target and 𝑘̃ measured from the current flow field (Rosales & Meneveau,
2005), i.e.,

𝐴 ≡ 𝜀target/2𝑘̃ . (2.30)

We use this second approach. In this approach, the energy injected by the forcing term is
𝐴⟨𝜌u · u⟩ = ⟨𝜌⟩𝜀target. For single phase flow, this second approach corresponds to a constant
rate of energy injection.

Extension to two-phase flows

To ensure that liner forcing does not affect the behavior of bubbles in turbulence, it can be
useful to only apply this forcing outside of regions of air (where 𝑓 = 1) (Rivière et al., 2021).
For the simulations in Chapter 5, the forcing term from (2.24) is multiplied by 𝑓 (shifted to
the appropriate velocity grid by linear interpolation) and ⟨·⟩ is replaced with averaging in
the water,

⟨·⟩𝑤 =

∫
· 𝑓 d𝑉∫
𝑓 d𝑉

. (2.31)

Extension to vertically varying forcing

It is often useful to do forcing in only part of the domain rather than the entirety. Following
Guo & Shen (2009) we will consider forcing weighted by a function F (𝑧):

f = 𝐴u′′F (𝑧) . (2.32)

The averaging ⟨·⟩ used in (2.27) and (2.29) for calculating 𝐴 is similarly weighted,

⟨·⟩ =
∫

· F (𝑧) d𝑉∫
F (𝑧) d𝑉 . (2.33)

For (2.25), we need to be a bit more careful with averaging. If we used (2.33), large-scale
structures in ⟨𝑢⟩𝐻 (𝑧) and ⟨𝑣⟩𝐻 (𝑧) would grow quickly, as viscosity would be insufficient to
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dissipate them. Instead, we use a planar average which is a function of 𝑧,

⟨·⟩𝐻 (𝑧) =
∬

· d𝑥 d𝑦∬
d𝑥 d𝑦

. (2.34)

This avoids forcing structures of any scale in ⟨𝑢⟩𝐻 (𝑧) or ⟨𝑣⟩𝐻 (𝑧). While one could use
more advanced filtering to avoid only large-scale structures, when we use this vertically
varying forcing in simulations (see §4.3) our interest is turbulence outside the forcing region
(F (𝑧) = 0). Because we are not too interested in the higher-order turbulence statistics within
the forcing region (F (𝑧) ≠ 0), we find this simple method sufficient.

2.2 Conservative volume of fluid method
This section describes the cVOF method developed by Weymouth & Yue (2010) to advance
the VOF field in time, as used by (2.9d) and (2.10d). We start with (2.8b), the governing
equation for the transport of the color function field. Because 𝑐 is not smooth, ∇𝑐 is not
well defined; however, we can integrate over each cell 𝛺𝑖 𝑗 𝑘 in the density grid and apply
divergence theorem to obtain the well-defined equation

𝜕

𝜕𝑡

∫
𝛺𝑖 𝑗𝑘

𝑐 d𝑉 = −
∮
𝜕𝛺𝑖 𝑗𝑘

𝑐𝑢𝑛 d𝑆 +
∫
𝛺𝑖 𝑗𝑘

𝑐∇ · u d𝑉 , (2.35)

where 𝜕𝛺𝑖 𝑗 𝑘 is the surface of cell 𝛺𝑖 𝑗 𝑘 and 𝑢𝑛 is the velocity normal to the surface (using the
convention that 𝑢𝑛 > 0 indicates flow out of the cell). For conciseness, we consider a single
cell and drop the “𝑖 𝑗 𝑘” subscripts. Recalling (2.14), we can write the previous equation in
terms of the VOF field,

Δ𝛺
𝜕 𝑓

𝜕𝑡
= −𝐹𝑛𝑒𝑡 +

∫
𝛺
𝑐∇ · u d𝑉 , (2.36)

where 𝐹𝑛𝑒𝑡 describes the net flux of 𝑐 out of 𝛺.
Weymouth & Yue (2010) propose an operator-split advection scheme to solve (2.36). To

go from the VOF field 𝑓 𝑘 at time 𝑡𝑘 to 𝑓 𝑘+1 at 𝑡𝑘+1 = 𝑡𝑘 + Δ𝑡 in an 𝒩 dimensional domain,3
an operator-split method calculates intermediate fields 𝑓 (𝑑) for 𝑑 = 1 . . .𝒩 where 𝑓 (0) = 𝑓 𝑘

and 𝑓 (𝒩) = 𝑓 𝑘+1. Each intermediate step corresponds to advection in one direction,

Δ𝛺
Δ𝑡

(︂
𝑓 (𝑑) − 𝑓 (𝑑−1)

)︂
= 𝐹𝑑+1/2 − 𝐹𝑑−1/2 +

∫
𝛺
𝑐
𝜕𝑢𝑑
𝜕𝑥𝑑

d𝑉 for 𝑑 ∈ 1 . . .𝒩 , (2.37)

Thus, for each direction, an operator split scheme requires calculating the flux on the positive
face (𝐹𝑑+1/2), the flux on the negative face (𝐹𝑑−1/2), and the dilation term. Section 2.2.1
describes the explicit second-order interface reconstruction method used by cVOF to calculate
the flux terms and section 2.2.2 describes the treatment of the dilation term.

Weymouth & Yue (2010) identify three requirements for a volume-conservative (to
machine precision) operator-split advection scheme:

3Here, for simplicity, we consider single-stage time-stepping. For two-stage Runge-Kutta, the only difference
is the velocity used for the second stage is the average of 𝑢𝑘 and 𝑢𝑘+1/2, as shown in (2.10d).
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n (𝑑−1)

𝐹𝑑+1/2Δ𝑡

𝑓 (𝑑−1)Δ𝛺

𝑢𝑑+1/2Δ𝑡

Figure 2-2: Illustration of the geometric calculation of the flux term 𝐹𝑑+1/2 based on the reconstructed
interface (——) after being transported by a face velocity 𝑢𝑑+1/2 > 0 (- - - -).

1. flux terms are conservative,
2. the dilation terms sum to zero, and
3. there is clipping due to over or under filling at any step.

Over or under filling refers to violation of

0 ≤ 𝑓 (𝑑) ≤ 1 , (2.38)

which would clearly be incompatible with the definition of the VOF field as the average of
a binary color function, (2.14). We note that, due to the arbitrary choice of which fluid is
‘dark’ and which is ‘light‘, the difference between under filling and over filling is simply a
matter of convention. A conservative advection scheme should have neither.

2.2.1 Interface reconstruction-based flux calculation
Within each grid cell, cVOF represents the interface as a linear plane, described by an
interface normal vector n and a scalar intercept 𝛼. In this representation, the interface is
located at locations x such that

n · x = 𝛼 . (2.39)

There is a known analytic function to determine the void fraction 𝑓 of a cell given 𝛼 and n,
and Scardovelli & Zaleski (2000) provide an explicit inversion to find 𝛼 given 𝑓 and n. The
challenge of interface reconstruction is determining n.

Weymouth & Yue (2010) propose a second-order no-inversion VOF interface reconstruc-
tion algorithm (NIVIRA) which determines the interface normal n based on a 3 × 3 × 3
region surrounding the grid cell. No inversion contrasts with other methods which require
repeated generation and inversion of trial interfaces. The first step of NIVIRA is to determine
the dominant direction of the interface. A first estimate of the interface normal, ñ = −∇ 𝑓 , is
calculated using second-order central difference and the largest component of ñ determines
the dominant direction of the interface. Once the dominate direction is identified, the void
fraction is summed over groups of three cells in that direction to go from a 3 × 3 × 3 array of
void fractions to a 3 × 3 array of heights in the dominate direction. By selecting forward or
backward differencing based on the height function in the center cell, Weymouth & Yue
(2010) show that one is always able to obtain a second-order accurate interface normal n,
meaning any linear interface would be reconstructed exactly.

This interface reconstruction is repeated each operator-split step of cVOF based on
the previous 𝑓 (𝑑−1) to determine n(𝑑−1) and 𝛼(𝑑−1) . For each flux term, the upwind
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interface is transported with the velocity on the face of the cell, from which the flux of
dark fluid can be easily calculated geometrically (e.g., figure 2-2). The upwind nature of
this approach guarantees flux terms are conservative, satisfying the first requirement for
volume-conservation.

2.2.2 Treatment of the dilation term
In addition to NIVIRA to efficiently calculate interface normals to obtain the flux terms, the
second development by Weymouth & Yue (2010) is a treatment of the dilation term which
satisfies requirements 2 and 3 of a volume-conservative operator-split advection scheme. To
start, Weymouth & Yue (2010) propose that 𝑐(x) within a cell will be approximated by a
single value 𝑐̃. In this case, (2.37) becomes

Δ𝛺
Δ𝑡

(︂
𝑓 (𝑑) − 𝑓 (𝑑−1)

)︂
= 𝐹𝑑+1/2 − 𝐹𝑑−1/2 + 𝑐̃

𝜕𝑢𝑑
𝜕𝑥𝑑

Δ𝛺 for 𝑑 ∈ 1 . . .𝒩 , (2.40)

where 𝜕𝑢𝑑/𝜕𝑥𝑑 = (𝑢𝑑+1/2 − 𝑢𝑑−1/2)/Δ𝑥. Because 𝜕𝑢𝑑/𝜕𝑥𝑑 is calculated using the same
scheme MAC uses for ∇ · u in (2.9b) and (2.10b), we guarantee that (at least to the precision
of the Poisson solver),

𝒩∑︁
𝑑=1

𝜕𝑢𝑑
𝜕𝑥𝑑

= 0 . (2.41)

The conclusion is that only a 𝑐̃ that remains constant throughout the operator-split steps will
lead to a dilation term that will sum to zero, satisfying requirement 2.

If 𝑐̃ must remain constant throughout the operator-split steps, for an explicit scheme it
should only be a function of 𝑓 (0) available at the start of the operator-split steps. Weymouth
& Yue (2010) show how naive approaches like 𝑐̃ = 𝑓 (0) , 0, or 1 will lead to over or under
filling. Instead, Weymouth & Yue (2010) propose using a cell center value,

𝑐̃ =

{︄
1 if 𝑓 (0) > 1/2
0 otherwise

, (2.42)

which they prove, along with the Courant-like timestep restriction

Δ𝑡
𝒩∑︁
𝑑=1

|︁|︁|︁|︁ 𝑢𝑑Δ𝑥𝑑

|︁|︁|︁|︁ < 𝐶 (2.13)

where 𝐶 = 1/2, guarantees that no over or under filling can take place.

2.2.3 Suppression of spurious wisps
The cVOF method described so far conserves volume to machine precision; however, the
calculation of fluxes using interface reconstruction often does not fully fill or empty a cell
due to the finite precision of the geometric calculations (Baraldi et al., 2014). This creates
cells with 𝑓 very close but not equal to 0 or 1, referred to as wisps. To suppress these
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wisps, we introduce a zero-threshold value 𝜖 𝑓 on VOF field (typically, 𝜖 𝑓 = 10−12). After
performing the 𝒩 operator-split steps of (2.40) to obtain 𝑓 (𝒩) , the following filter is applied
to obtain the final new VOF field,

𝑓 𝑘+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 1 − 𝑓 (𝒩) < 𝜖 𝑓
0 if 𝑓 (𝒩) < 𝜖 𝑓
𝑓 (𝒩) otherwise

. (2.43)

In addition to suppressing wisps, this filter also addresses a practical challenge that
arises from using a floating-point representation of 𝑓 . Due to the relative resolution of
floating-point arithmetic, operations on nearly full cells ( 𝑓 ≈ 1) will have larger precision
errors than nearly empty cells ( 𝑓 ≈ 0). This creates a discrepancy between operations on
𝑓 and 1 − 𝑓 , despite the choice of light/dark fluid being arbitrary. 𝜖 𝑓 larger than machine
epsilon (O(10−16) for double precision) ensures that the nature of machine-precision-related
errors are similar regardless of the choice of light/dark fluid.

2.3 Bubble identification using connected component
labeling

With the DNS described above, we have access to the void fraction 𝑓 𝑘𝑖 𝑗 𝑘 of each cell at each
simulation time step 𝑡𝑘 , which is a discrete representation of the color function 𝑐(x, 𝑡𝑘 ). This
is an Eulerian field describing the location of air and water, but for analysis we want to group
the air into contiguous regions, i.e., bubbles. At some snapshot in time 𝑡𝑛 corresponding
to some simulation time step 𝑡𝑘 , we want to identify the set of bubbles ℬ𝑛 and mark the
air associated with each with a label 𝑙 ∈ {1 . . . 𝑀𝑛}, where 𝑀𝑛 is the number of bubbles
at 𝑡𝑛. Note that we have switched from a time index 𝑘 corresponding to increments of the
simulation by Δ𝑡 to a time index 𝑛 corresponding to increments of time intervals between
snapshots Δ𝑡𝑠, i.e., 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡𝑠. This notation will be useful in Chapter 3 when we
introduce tracking bubbles through time between snapshots. This section addresses the
prerequisite step of identifying bubbles at a single snapshot.

To develop a bubble labeling scheme, we first assume that the air in each cell can only
be associated with a single bubble. This allows bubble labeling to be posed as connected-
component labeling (CCL), which is ubiquitous in the field of computer vision. For CCL
on large three-dimensional domains distributed across multiple nodes and processors, we
develop a C++ library which uses equivalent label sets (He et al., 2007) to store connection
information on a single processor, and then the methods described by Harrison et al. (2011)
and Iverson et al. (2015) to determine connections across parallel processors and assign
globally unique labels. We also develop a simpler Python implementation, blobid-python4,
for post processing when massive parallelization is not necessary. We find the computational
cost of CCL is generally trivial compared to the DNS flow solver. Thus, rather than the
details of the CCL algorithm, the focus of this section is on how CCL can be adapted from
computer vision to bubble labeling.

4https://github.com/dgaylo/blobid-python
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To apply CCL to bubble labeling, we must specify two types of criteria. First, we must
define which grid cells are “object” cells, i.e., cells that will eventually be part of a bubble.
Second, we must define a way to determine if two adjacent object cells are connected.
While the accuracy of bubble labeling is fundamentally limited by the flow solver’s discrete
representation of the air-water flow (i.e., grid size Δ), recent work has shown that the choice
of objectivity and connectivity criteria also affect accuracy (Hendrickson et al., 2020; Chan
et al., 2021a).

2.3.1 Objectivity criteria
The first step of bubble labeling is to determine which grid cells are to be part of a bubble.
Chan et al. (2021a) focus on modifying objectivity criteria as a way to improve the accuracy
of bubble labeling. Using the convention that 𝑓 𝑛𝑖 𝑗 𝑘 = 1 corresponds to a cell filled with air at
time 𝑡𝑛 and 𝑓 𝑛𝑖 𝑗 𝑘 = 0 corresponds to a cell filled with water, the simplest criteria is that the
amount of air in the cell must exceed a threshold value 𝜙𝑐:

𝑓 𝑛𝑖 𝑗 𝑘 > 𝜙𝑐 . (2.44)

Recalling the zero-threshold filter (2.43), any 𝜙𝑐 ≤ 𝜖 𝑓 will identify all air in the simulation
as part of a bubble. A challenge with a small 𝜙𝑐 (e.g., 𝜙𝑐 ∼ 10−12) is that it causes the wisps
discussed in section 2.2.3 to be identified as part of bubbles. While a wisp connected to
a real bubble has a negligible effect on the total volume, Chan et al. (2021a) show wisps
can cause multiple bubbles to be artificially linked, significantly affecting the bubble size
distribution. One option to suppress wisp bridging is to increase 𝜙𝑐 (e.g., 𝜙𝑐 = 0.5); however,
this causes cells on the surfaces of a real bubble to be excluded, reducing the total volume.
A large 𝜙𝑐 means that a significant portion of air will not be assigned to a bubble. This is a
particular issue for volume-based bubble tracking (see Chapter 3), as it means we will get an
incomplete description of the evolution of the bubble population.

Chan et al. (2021a) propose a different objectivity criteria to allow suppression of wisp
bridging while reducing unassigned air compared to large 𝜙𝑐. In addition to (2.44), at least
one of the cell’s six neighbor cells must have a void fraction that exceeds a second threshold
value 𝜙𝑐,𝑚:[︂

𝑓 𝑛𝑖 𝑗 𝑘 > 𝜙𝑐

]︂
∧

{︂[︂
𝑓 𝑛𝑖+1 𝑗 𝑘 > 𝜙𝑐,𝑚

]︂
∨

[︂
𝑓 𝑛𝑖−1 𝑗 𝑘 > 𝜙𝑐,𝑚

]︂
∨

[︂
𝑓 𝑛𝑖 𝑗+1𝑘 > 𝜙𝑐,𝑚

]︂
∨ · · ·

}︂
. (2.45)

Chan et al. (2021a) propose 𝜙𝑐 = 0 and 𝜙𝑐,𝑚 = 0.5. This reduces the volume lost on the
surfaces of bubbles, as any cell with air that is within one grid cell of a mostly full cell will
be added to a bubble.

2.3.2 Connectivity criteria
In addition to whether a grid cell is an object cell or not, CCL needs a criteria for whether
pairs of object cells are connected. To start, we specify that only adjacent cells can be
connected. Depending on whether diagonal cells are included, a cell on a three-dimensional
Cartesian grid can have either 6 or 26 adjacent cells. Figure 2-3 illustrates this for two
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(a)

×

(b)

×

Figure 2-3: Illustration of (a) 4-connectivity and (b) 8-connectivity for a two-dimensional grid,
where “×” is the object cell and the other cells are those that would be considered adjacent.

(a) 𝑛𝑥 > 0; 𝑛𝑥 > 0 (b) 𝑛𝑥 < 0; 𝑛𝑥 > 0 (c) 𝑛𝑥 < 0; 𝑛𝑥 < 0 (d) 𝑛𝑥 > 0; 𝑛𝑥 < 0

Figure 2-4: The four different configurations ICL considers for the sign of interface normals in two
adjacent grid cells. In (a)–(c) ICL considers the two cells connected. In (d) the normals are opposed
and ICL does not consider the two cells connected.

dimensions, where a cell can have either 4 or 8 adjacent cells. For bubble identification we
do not include diagonal cells and use 6-connectedness. Without any additional criteria, an
object cell will be considered connected to any object cell among its 6 neighbors.

A challenge with the simple connectivity criteria is that bubbles are often merged
together if they have interfaces separated by < 2Δ. This artificial merging can be reduced by
sharpening the VOF field. The Informed Component Labeling algorithm (ICL) proposed
by Hendrickson et al. (2020) uses NIVIRA developed by Weymouth & Yue (2010) (see
description in section 2.2.1) to obtain piecewise linear interface reconstruction in each grid
cell. As illustrated in figure 2-4, ICL adds an additional connectivity criteria: adjacent
object cells are only considered connected if their interface normals are not opposed. Given
ICL only uses the sign of the interface normal, one could be tempted to use a less accurate
method to approximate the interface normals, such as ñ = −∇ 𝑓 calculated using central
differencing. However, we will show this notably reduces the accuracy of ICL.

2.3.3 Comparison of bubble labeling schemes
To evaluate different bubble labeling schemes, we consider 400 snapshots of the VOF field
near the free surface from an illustrative simulation5 which has air bubbles in water near a
free surface. We consider the original VOF field with uniform grid size Δ, as well as the
field downsampled by averaging eight grid cells into one to give a larger grid size Δ′ = 2Δ.
Figure 2-5 shows an example of the two different fields.

We consider three different bubble labeling schemes:
• The method proposed by Chan et al. (2021a), where (2.45) is used (𝜙𝑐 = 0 and 𝜙𝑐,𝑚 = 0.5)

for the object criteria and no additional connectivity criteria is imposed (THRESH).
5DNS of forced FST simulation at Fr2 = 1.2, We = ∞, as described in section 4.3
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(a) Original, 2562 × 128 (b) Downsampled, 1282 × 64

Figure 2-5: Slice of the VOF field from a snapshot of bubbles near an air entraining free surface at
two different resolutions. Air is white and water is black.
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Figure 2-6: Bubble size distributions 𝑁 (𝑎) calculated using different bubble identification methods
for (a) the original grid and (b) the downsampled grid. As reference, (- - - -) shows 𝑁ref(𝑎), the
average result of THRESH and ICL-NIVIRA on the original grid.

• The method proposed by Hendrickson et al. (2020), where (2.44) is used (𝜙𝑐 = 0) for the
object criteria and interface normals, calculated with NIVIRA, are used for an additional
connectivity criteria (ICL-NIVIRA).

• The same method proposed by Hendrickson et al. (2020), but with central differencing
rather than NIVIRA used to calculate the normals (ICL-CD).

Using each of these methods we identify bubbles in each of the 400 snapshots using
the bolbid-python library. From a bubble’s volume 𝑣, we calculate an effective radius
𝑎 = (3𝑣/4𝜋)1/3 and then bin the results to determine the average bubble size distribution
𝑁 (𝑎), shown in figure 2-6.

Suppression of wisp bridging

First, we compare THRESH and ICL-NIVIRA at the original resolution. Especially for
𝑎 < 5Δ we see that ICL-NIVIRA identifies more bubbles of a given radius than THRESH. In
this simulation, there is a lot of air near the free surface. ICL-NIVIRA’s stricter connectivity
criteria implies more of this air is in bubbles, disconnected from the bulk region of air above
the free surface (the ‘sky’). THRESH’s less strict connectivity criteria implies more of the
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air is still connected to the sky. Chan et al. (2021a) suggest that excluding wisps using a
large 𝜙𝑐 or 𝜙𝑐,𝑚 in the objectivity criteria is necessary to suppress wisp bridging and robustly
separate bubbles from the sky; however, our results show that ICL (which uses 𝜙𝑐 = 0)
separates more bubbles from the sky. The orientation of the interface normal for wisps is
essentially random, so rather than a single large bridging structure, ICL identifies wisps as
many small bubbles. Thus, wisps with ICL lead to many small bubbles of radius 𝑎 ≪ Δ
which are easily excluded from analysis.

Effect of grid resolution

We now consider the accuracy of ICL-NIVIRA versus THRESH. Because this is real
simulation data, we do not have a given bubble size distribution to use as truth. For the
original grid, we note that both ICL-NIVIRA and THRESH give fairly similar values for
𝑁 (𝑎) across the 𝑎/Δ range we consider, and almost identical values for 𝑎 > 5Δ. Based on
this, we treat 𝑁ref(𝑎), the average of the ICL-NIVIRA and THRESH 𝑁 (𝑎)s, as the reference
“truth” for comparison. Against this reference, we consider the accuracy of ICL-NIVIRA
versus THRESH on the down-sampled courser grid (Δ′ = 2Δ). Figure 2-6 shows that
THRESH consistently under predicts the number of bubbles by roughly a factor of two.
This means that as the resolution goes down, more bubbles are incorrectly connected to
the sky. The ratio of 𝑁 (𝑎) predicted by THRESH and 𝑁ref(𝑎) is consistent across bubble
sizes, meaning the probability that THRESH will erroneously link a bubble to the sky is
independent of the bubble’s size.

For ICL-NIVIRA, we see that there is very little error on the down-sampled grid for
bubbles 𝑎 > 3Δ′. Recall that NIVIRA produces a second-order piece-wise linear interface
based on a 3 × 3 × 3 stencil. For roughly spherical bubbles with radii larger than three times
the grid size, this will produce very accurate interface orientations. Figure 2-6 confirms
that, as intended by Hendrickson et al. (2020), ICL-NIVIRA can accurately distinguish
sufficiently sized closely spaced bubbles using interface reconstruction. For bubbles 𝑎 < 3Δ′
we see ICL-NIVIRA over predicts the number of bubbles, though by a factor similar to how
THRESH under predicts bubbles of all sizes.

Effect of less accurate interface reconstruction on ICL

Finally, we highlight that the accuracy we see here for ICL-NIVIRA is closely tied to the
accuracy of the NIVIRA reconstruction method. In Figure 2-6 we also consider ICL-CD,
where simple central differencing is used instead. Weymouth & Yue (2010) discuss how
central differencing in this case is less than second order accurate, and figure 2-6 shows that
using this less than second order accurate method significantly reduces the overall accuracy
of ICL. In addition to a reversion to the THRESH behavior of linking bubbles to the sky
as resolution decreases, we also see some error in the large bubbles at the full resolution.
When using ICL, one should make sure the interface reconstruction method is strictly second
order accurate, as is the case with NIVIRA. Additionally, some caution should be taken for
bubbles with radii near the grid size, as the piece-wise linear representation of the interface
may be too course.
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Chapter 3

Eulerian Label Advection Method for
Volume-Conservative Bubble Tracking

As discussed in Chapter 1, multiple bubble evolution mechanisms are present and may be
relevant to the bubble population beneath an entraining free surface. Measurements of the
bubble population alone only provide the net effect of all these mechanisms, limiting what
can be elucidated about any individual mechanism. To study these evolution mechanisms, we
require methods to quantify individual evolution mechanisms within the bubble population.
This is achieved with bubble tracking, which identifies the individual events related to each
evolution mechanisms. While our interest in this work is bubbles, we note that the methods
derived in this chapter are equally applicable to droplets.

Key results from this chapter are summarized in “An Eulerian label advection method for
conservative volume-based tracking of bubbles/droplets” by Gaylo, Hendrickson & Yue
(2022). Here we provide more details, particularly on how the method is used to quantify
individual evolution mechanisms. An implementation of the method is available in the
flexELA1 library.

3.1 Introduction
For bubble tracking, simulations have an advantage over experiments in that all (resolved)
properties of the flow are readily available, relevant here, the velocity field u(x, 𝑡) and the
color function field 𝑐(x, 𝑡). Still, bubble tracking is a challenge in simulations. Formally,
a bubble can be defined as a volume enclosed by a continuous surface representing the
interface between air (𝑐 = 1) and water (𝑐 = 0).2 Neglecting dissolution, this surface is
material, so its evolution (and thus bubble evolution) can be obtained from u(x, 𝑡). However,
the evolution of the surface is a challenge because numerical methods such as volume of
fluid or level set do not explicitly define this interface. This lack of an explicit interface
creates two challenges in regard to bubble tracking. The first challenge is the need to identify
individual bubbles at an instant in time (snapshot) based on the discretized representation

1https://github.com/dgaylo/flexELA
2This chapter uses the convention that air is ’dark’ fluid, the opposite of the convention used in section 2.1.
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of the color function field. The second challenge is to track how these individual bubbles
evolve between two adjacent snapshots. The first challenge is, more broadly, the process
of connected-component labeling (CCL), as discussed in section 2.3. In this chapter, we
will focus on the second challenge of tracking the evolution of individual bubbles. To this
end, we will take the bubble identification provided by CCL as a given and focus on the
accuracy of the tracking of these identified bubbles. Although the ultimate accuracy of
measured bubble evolution mechanisms depends on both the accuracy of CCL and tracking,
this approach avoids entangling these two challenges.

Recently, two methods for bubble tracking in numerical simulations have been proposed
(Chan et al., 2021a; Gao et al., 2021). Both methods can be classified as Lagrangian methods,
as their inputs from the simulation are Lagrangian integral quantities of bubbles, e.g., volume,
centroid, and total momentum. A limitation of both these methods is that they assume
that all events are binary, meaning events involve at most two bubbles from one snapshot
and one bubble from the other snapshot. Applied to air entraining flows, the Lagrangian
methods have had some success describing fragmentation away from the free surface (Gao
et al., 2021; Chan et al., 2021c); however, the near the free surface the Lagrangian methods
struggle. They are unable to accurately describe the high-arity evolution of large complex
air structures near the free surface. Application of the binary assumption to non-binary
events introduces erroneous creation/extinction events (Chan et al., 2021a). This is a serious
problem, as such error is inseparable from entrainment and degassing statistics. Although a
Lagrangian method could theoretically be extended to capture higher-arity events, it is not
practical computationally.

We pursue a different, Eulerian approach to bubble tracking. Unlike Lagrangian methods,
the available velocity field u(x, 𝑡) is used to determine the evolution of bubbles. Because an
Eulerian approach focuses on grid-level detail to describe bubble evolution, the complexity
of the formulation can be independent of the arity of the bubble-level events. In section 3.2
we develop a volume-based framework to describe the evolution of bubbles in terms of
the movement of air volume between bubbles. This volume-based tracking approach
uniquely describes the evolution of the bubble population through a volume-tracking matrix
(VTM), which can describe evolution regardless of the complexity. From this more general
description of bubble evolution, individual events (entrainment, degassing, fragmentation,
etc.) can be extracted. In section 3.3 we demonstrate that Lagrangian methods are unable to
uniquely provide the VTM. This is true even if a Lagrangian method were able to avoid the
binary assumption. In section 3.4 we build upon the volume-fraction fluxes provided by the
cVOF method (Weymouth & Yue, 2010) to create the Eulerian Label Advection method
(ELA), a volume-conservative numerical implementation of volume-based tracking. By
leveraging fluxes already calculated by cVOF, ELA minimizes additional computational cost.
In section 3.5 these results are validated using the canonical problem of bubbles fragmenting
in homogeneous isotropic turbulence (HIT).

3.2 Volume-based bubble tracking
Before going further, it is useful to define a mathematical framework to describe bubble
evolution. Consider that given a numerical approximation of the color function from a
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snapshot at time 𝑡𝑛, 𝑐(x, 𝑡𝑛), a CCL method provides a set of non-overlapping bubbles
ℬ
𝑛 = {1 . . . 𝑀𝑛}, where 𝑀𝑛 is the number of bubbles. The CCL method identifies these

bubbles by labeling the air withing each with a corresponding label 𝑙 ∈ 1 . . . 𝑀𝑛. Some
CCL methods do not identify all air as being part of a bubble (see §2.3.1); so we define an
additional “bubble” with label 𝑙 = 0 containing all the (not necessarily contiguous) air not
otherwise assigned to a bubble. To represent the results of CCL, we define a vector color
function c𝑛 (x, 𝑡) with elements initially defined at time 𝑡𝑛 by

𝑐𝑛𝑙 (x, 𝑡𝑛) =
{︄

1 if x ∈ bubble 𝑙
0 else

for 𝑙 ∈ 0 . . . 𝑀𝑛 . (3.1)

Rather than a single binary fluid color function describing if there is air or water at a location
x and time 𝑡, we have split the air into separate immiscible fluids based on which bubble it
was in at time 𝑡𝑛. Equivalent to (2.8b), the evolution of c𝑛 must satisfy

𝜕c𝑛
𝜕𝑡
+ u · ∇c𝑛 = 0 . (3.2)

With inflow boundary conditions, not all air will have necessarily been in an identified
bubble at 𝑡𝑛, but this can be accounted for by adding a bubble (or bubbles) to ℬ

𝑛 and setting
the corresponding element(s) of c𝑛 at the boundaries. Because bubbles are defined to be
non-overlapping at 𝑡𝑛, all air is associated with a bubble, and c𝑛 is advected with the same u
as 𝑐, the following consistency requirement is true at all times and locations:∑︁

𝑙

𝑐𝑛𝑙 (x, 𝑡) = 𝑐(x, 𝑡) . (3.3)

For the air at any location x at a time 𝑡, c𝑛 (x, 𝑡) provides the bubble 𝑙 ∈ ℬ𝑛 that contained
the particle at time 𝑡𝑛. Thus, c𝑛 provides a complete Eulerian description of the flow of air.

3.2.1 A volume-tracking matrix description of bubble evolution
While c𝑛 provides a complete Eulerian description of the evolution of air over arbitrary
time, we are interested in the evolution of individual bubbles over snapshot intervals Δ𝑡𝑠.
Describing the evolution in terms of individual bubbles implies a Lagrangian description,
where we follow individual bubbles rather than the entire field of air. Here we will show how
a matrix-based Lagrangian description of bubble evolution is obtainable from the previous
Eulerian description.

Integrating (3.2) over time (advection), the vector color function c𝑛 (x, 𝑡) originally
defined by (3.1) at time 𝑡𝑛, i.e., c𝑛 (x, 𝑡𝑛), can be advanced in time to the next snapshot
𝑡𝑛+1 = 𝑡𝑛 +Δ𝑡𝑠 to give c𝑛 (x, 𝑡𝑛+1). At the next snapshot (𝑡𝑛+1), a CCL method provides a new
set ℬ𝑛+1 = {0 . . . 𝑀𝑛+1} of bubbles, from which we use (3.1) again to define a new vector
color function c𝑛+1(x, 𝑡), with the initial value defined at 𝑡𝑛+1 by

𝑐𝑛+1𝑚 (x, 𝑡𝑛+1) =
{︄

1 if x ∈ bubble 𝑚
0 else

for 𝑚 ∈ 0 . . . 𝑀𝑛+1 . (3.4)
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Based on c𝑛 and c𝑛+1, both available at time 𝑡𝑛+1, the volume of dark fluid from a bubble
𝑙 ∈ ℬ𝑛 that ends up in a bubble 𝑚 ∈ ℬ𝑛+1 is

𝑞𝑚𝑙 =
∫
∀
𝑐𝑛+1𝑚

(︂
x, 𝑡𝑛+1

)︂
𝑐𝑛𝑙

(︂
x, 𝑡𝑛+1

)︂
d𝑉 , (3.5)

where ∀ is the whole domain. Applying (3.4), this is equivalent to

𝑞𝑚𝑙 =
∫

x∈bubble 𝑚
𝑐𝑛𝑙

(︂
x, 𝑡𝑛+1

)︂
d𝑉 . (3.6)

For 𝑙 = 0 . . . 𝑀𝑛 and 𝑚 = 0 . . . 𝑀𝑛+1, we define the matrix Q(𝑛→𝑛+1) = {𝑞𝑚𝑙}, which
provides a complete description of the flow of air from bubbles ℬ𝑛 to bubbles ℬ𝑛+1. Each
element 𝑞𝑚𝑙 in the matrix Q(𝑛→𝑛+1) provides the (absolute) volume of air that transfers from
bubble 𝑙 to bubble 𝑚 over the interval 𝑡𝑛 to 𝑡𝑛+1.

We note that, based on c𝑛, we can express the volume of all the bubbles at time 𝑡𝑛 as a
vector v𝑛 of length 𝑀𝑛,

v𝑛 =
∫
∀

c𝑛 (x, 𝑡) d𝑉 . (3.7)

Recalling (3.3), the column and row sums of Q(𝑛→𝑛+1) give the bubble volumes at 𝑡𝑛 and
𝑡𝑛+1 respectively: ∑︁

𝑚

𝑞𝑚𝑙 = 𝑣
𝑛
𝑙 , (3.8a)∑︁

𝑙

𝑞𝑚𝑙 = 𝑣
𝑛+1
𝑚 . (3.8b)

Normalizing the columns of Q(𝑛→𝑛+1) by v𝑛,

𝑎𝑚𝑙 = 𝑞𝑚𝑙
/︁
𝑣𝑛𝑙 , (3.9)

we define the volume-tracking matrix (VTM), A(𝑛→𝑛+1) = {𝑎𝑚𝑙}. The VTM is a left
stochastic matrix, ∑︁

𝑚

𝑎𝑚𝑙 = 1 , (3.10)

which describes the evolution of volume from bubbles ℬ𝑛 to bubbles ℬ𝑛+1 as

v𝑛+1 = A(𝑛→𝑛+1)v𝑛 . (3.11)

We note that if instead the rows of Q(𝑛→𝑛+1) are normalized by v𝑛+1, one gets a functionally
equivalent right stochastic matrix description of the reverse evolution.

It is important to note that, through the integration in (3.5), we have lost some information
about the flow of air on the particle level. Rather than a deterministic description of the flow
of air particles, each entry 𝑎𝑚𝑙 of the VTM can be interpreted as the probability a particle of
dark fluid is in bubble 𝑚 ∈ ℬ𝑛+1 at 𝑡𝑛+1 given that it was in bubble 𝑙 ∈ ℬ𝑛 at 𝑡𝑛. This means
that, unlike c𝑛, the VTM A(𝑛→𝑛+1) does not provide a complete Eulerian description of the
evolution of air. However, on the bubble level, each entry 𝑎𝑚𝑙 provides the (deterministic)
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proportion of the volume of bubble 𝑙 ∈ ℬ
𝑛 that ends up in bubble 𝑚 ∈ ℬ

𝑛+1. Thus, the
VTM provides a complete Lagrangian description of the evolution of bubbles.

Given that the VTM is a left stochastic matrix, we can also consider the evolution of
bubbles over 𝑁 snapshot intervals,

v𝑛+𝑁 =

[︄
𝑛∏︂

𝑚=𝑛+𝑁−1
A(𝑚→𝑚+1)

]︄
v𝑛 , (3.12)

This implies an effective VTM

Ã(𝑛→𝑛+𝑁) ≡
𝑛∏︂

𝑚=𝑛+𝑁−1
A(𝑚→𝑚+1) , (3.13)

with an effective snapshot interval Δ𝑡𝑠,eff. ≡ 𝑁Δ𝑡𝑠. However, as the VTM does not provide a
complete Eulerian description, the effective VTM Ã is generally not equal to the true VTM
A with Δ𝑡𝑠 increased to equal Δ𝑡𝑠,eff.. The computational cost of the tracking method we
develop in section 3.4 increases with Δ𝑡𝑠 so matrix multiplication provides a cheaper way to
obtain long snapshot intervals; however, we find obtaining the true VTM with sufficient Δ𝑡𝑠
is not cost prohibitive. Although not used in this work, Appendix B discusses the tradeoff
between accuracy and cost when using VTM multiplication.

3.2.2 Extracting bubble evolution mechanism from the VTM

We now look at how bubble evolution mechanism can be identified by the VTM. Figure 3-1a
illustrates the VTM when one bubble fragments into 𝑚 daughter bubbles. In general,
whenever there are multiple non-zero entries in a row of the VTM this means the volume
from one bubble is now in multiple bubbles, meaning fragmentation occurred. Figure 3-1b
illustrates the VTM when 𝑚 bubbles coalesce into a single daughter bubble, the reverse
of fragmentation. Coalescence is identified when there are multiple non-zero entries in a
column of the VTM.

For entrainment and degassing, we first note that from the perspective of the VTM the
bulk region of air above the free surface (the “sky”) is treated just like a bubble. Thus,
entrainment is simply fragmentation of the “sky” bubble and degassing is coalescence of
with the “sky” bubble. This is illustrated in figure 3-1c. The VTM entry 𝑎11 represents air
that stayed in the sky. Each non-zero entry in the same column represents an entrainment
event, and each non-zero entry in the same row represents a degassing event.

Figure 3-2 shows a real example from the simulation in §3.5. Based on the first column
of A(𝑛→𝑛+1) , we see that the majority of the volume from the parent with label 1 at time 𝑡𝑛
went to the child with label 4 at time 𝑡𝑛+1, apart from a small portion that went to child 3.
For clarity, under-resolved bubbles have been excluded, causing the first column not sum to
1, cf. (3.10). Based on the second column, the volume from parent 2 went to three different
children, 1, 2, and 3. Based on the third column, all the volume from parent 3 went to
child 5. The events described by this VTM are complex in two ways: there is a non-binary
fragmentation event, and both fragmentation and coalescence occurred to form child 3.
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Figure 3-1: Illustration of bubble evolutions and the associated VTM equation v𝑛+1 = Av𝑛, expanded
to show each term. (a) One bubble fragments into 𝑚 bubbles. (b) 𝑚 bubbles coalesce into a single
bubble. (c) One bubble is entrained (red) and two bubbles are degassed (green), along with other
processes.
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(c) Subset of A(𝑛→𝑛+1)

Figure 3-2: The 𝑓 = 0.5 iso-surface from two snapshots of a subset of a simulation (see §3.5 for
details) and the corresponding part of the VTM extracted using ELA (described in §3.4). Grid cells
are highlighted corresponding to the label assigned by the CCL method. Note that an iso-surface
is itself a CCL method, which does not necessarily align with the chosen method. 3 resolved
parent bubbles (a) have their volume distributed among 5 resolved child bubbles (b). ELA gives the
associated VTM (c).
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(a)

𝑐(x, 𝑡𝑛)
Air Location

𝑐(x, 𝑡𝑛+1)
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{𝑞𝑚𝑙}
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𝑣𝑛𝑙 , x̄𝑛𝑙 , etc.

Bubble Properties
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Lagrangian DataEulerian Data

Eq. 2.8b

(b)

𝑐(x, 𝑡𝑛)
Air Location

𝑐(x, 𝑡𝑛+1)
Eq. 3.5

{𝑞𝑚𝑙}
Tracking

𝑐𝑛𝑙 (x, 𝑡𝑛)
Air Source

𝑐𝑛𝑙 (x, 𝑡𝑛+1)

𝑐𝑛+1𝑚 (x, 𝑡𝑛+1)

CCL

CCL

Eq. 3.2

Eulerian Data
Lagrangian Data

Eq. 2.8b

Figure 3-3: Sketch of (a) Lagrangian-based tracking and (b) Eulerian-based tracking methods to
answer how much volume from a bubble labeled 𝑙 at 𝑡𝑛 ended up in a bubble labeled𝑚 at 𝑡𝑛+1 = 𝑡𝑛+𝑇𝑠.

3.3 Limitations of Lagrangian-based tracking

Previous methods for bubble tracking (Chan et al., 2021a; Gao et al., 2021) can be categorized
as Lagrangian-based methods. Figure 3-3a illustrates how Lagrangian-based tracking works.
At each snapshot interval 𝑡𝑛, they use the results from CCL to calculate Lagrangian properties
of bubbles. In addition to bubble volume (3.7), this could include bubble centroid,

x̄𝑛𝑙 =
1
𝑣𝑛𝑙

∫
∀
𝑐𝑛𝑙 (x, 𝑡𝑛) x d𝑉 , (3.14)

or more generally any integral quantity over a bubble calculated at the snapshot interval
𝑡𝑛. From such bubble properties at two successive snapshots, the methods seek to solve an
inverse problem to find a possible evolutionary path between the two snapshots. This inverse
problem can be solved through physical and numerical constraints (Chan et al., 2021a)
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or by minimizing a prescribed error function (Gao et al., 2021). Because the Lagrangian
data for bubbles is typically very small compared to any Eulerian field, Lagrangian-based
tracking is often done as part of post-processing. During the simulation the Lagrangian
bubble properties are recorded then later post-processed. The two limitations of Lagrangian
methods come from the fact that they are trying to solve an inverse problem.

3.3.1 Computational complexity

The first problem with the inverse problem is how the cost of the methods scales with the
complexity of the evolution of the bubbles. For a simple example, first consider bubble
evolution where bubbles only translate and there is no coalescence or fragmentation. For
𝑀 initial bubbles, there are 𝑀! possible solutions to the inverse problem. If instead each
bubble at the first snapshot fragments into two bubbles, there are now (2𝑀)! possible
solutions. Generalizing, if all the bubbles fragment into 𝑛 daughter bubbles, the possible
solutions are (𝑛𝑀)!. This simplified example illustrates the super-polynomial complexity of
Lagrangian methods as the complexity of the bubble evolution (illustrated by 𝑛) increases.
Lagrangian methods typically assume that all events are binary (𝑛 = 2), where either one
bubble fragments into two or two bubbles coalesce into one. Although both Gao et al. (2021)
and Chan et al. (2021a) both note that their methods are theoretically extendable to identify
non-binary events, the underlying scaling makes it challenging.

Recently Basak et al. (2026) made some progress extending the Lagrangian method by
Gao et al. (2021) to non-binary events, but this is done by assuming only simple non-binary
events, where one bubble fragments into many (figure 3-1a) or many coalesce into one
(figure 3-1b). Their method cannot handle complex events involving both fragmentation and
coalescence (e.g., figure 3-2).

3.3.2 Cycle generation leads to non-unique solutions

In addition to computational complexity, a more fundamental problem with Lagrangian-based
tracking methods is that they cannot always provide enough information to determine a unique
solution to the VTM. This is because, rather than tracking air volume, Lagrangian-based
methods track bubbles. To make this distinction clear, consider the case where two large
bubbles of volume 𝑣𝑛1 = 𝑣𝑛2 exchange two smaller bubbles of volume 0.05𝑣𝑛1 each over a time
𝑇 , as shown in figure 3-4. In the form of (3.11), the correct VTM for this evolution is:{︃

𝑣𝑛+11
𝑣𝑛+12

}︃
=

[︃
0.95 0.05
0.05 0.95

]︃ {︃
𝑣𝑛1
𝑣𝑛2

}︃
. (3.15)

Lagrangian-based methods seek to identify a solution to which bubbles at 𝑡𝑛 contributed
to a bubble at 𝑡𝑛+1 based only on the information available at 𝑡𝑛 and 𝑡𝑛+1. In terms of our
VTM description, they seek to identify which entries of Q(𝑛→𝑛+1) are non-zero. However,
identifying non-zero elements is insufficient to obtain a unique solution. Suppose that a
Lagrangian-based method correctly identifies the non-zero elements. Applying volume
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Figure 3-4: Illustration of two bubbles of equal volume exchanging 5% of their volume over a time
𝑇 less than the snapshot interval Δ𝑡𝑠. The vector color function c𝑛 (x, 𝑡) is shown as blue where
𝑐𝑛1 (x, 𝑡) = 1 and green where 𝑐𝑛2 (x, 𝑡) = 1.

conservation using (3.10) gives the set of equations,{︃
𝑣𝑛+11
𝑣𝑛+12

}︃
=

[︃
𝑎11 (1 − 𝑎22)

(1 − 𝑎11) 𝑎22

]︃ {︃
𝑣𝑛1
𝑣𝑛2

}︃
, (3.16)

which does not have a unique solution.
For a generalized explanation of why some VTMs cannot be solved based only on their

non-zero entries and volume conservation, it is useful to use graph theory. The evolution of
bubbles over a snapshot interval can be described as a graph where the nodes are all bubbles
present at 𝑡𝑛 and 𝑡𝑛+1, {ℬ𝑛,ℬ𝑛+1}, and the edges are the non-zero elements of Q(𝑛→𝑛+1) .
Each element value 𝑞𝑖 𝑗 represents the flow of volume (i.e., current) along the edge. Any
cycle in the graph allows a loop current, introducing a null space in the solution for the
currents 𝑞𝑖 𝑗 . If these cycles exist in the non-zero elements of Q(𝑛→𝑛+1) , a unique solution is
not obtainable without additional information. In practice, a Lagrangian-based method used
for identifying non-zero elements my implicitly disallow cycles, however this only masks the
problem. For (3.16), such a method would pick the solution 𝑎11 = 𝑎22 = 1 (or 0), missing
the exchange of volume.

3.3.3 Quantifying cycle generation in two-dimensional vortical ex-
change

To illustrate the challenge of bubble tracking when complex interactions are present, we
consider a flow similar to the conceptual one shown in figure 3-4. Consider two circular
bubbles of radius 𝑎 whose centers are both a distance 𝐿 from the center of a forced vortex of
radius 𝑅 and rotation Ω, giving an angular velocity field 𝑣𝜃 (𝑟) as a function of the radial
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(a) 𝑡/𝑇 = 0 (b) 𝑡/𝑇 = 1.5 (c) 𝑡/𝑇 = 3 (d) 𝑡/𝑇 = 4.5 (e) 𝑡/𝑇 = 6

Figure 3-5: Evolution of the 𝑓 = 0.5 iso-surface in the two-dimensional vortical exchange simulation.

distance 𝑟 from the vortex center,

𝑣𝜃 (𝑟) = Ω𝜋𝑟H(𝑅 − 𝑟) , (3.17)

whereH is the Heaviside step function. The vortex rips volume from one bubble, creating
smaller bubbles which are then transferred to the other bubble. The time it takes for this
exchange of volume gives the characteristic time 𝑇 = 1/Ω. As discussed in §3.3.2, if
Δ𝑡𝑠 > 𝑇 , cycles are formed which prevent a unique solution using previous methods. Here,
we perform a two-dimensional simulation of 𝐿/𝑅 = 6/5 and 𝑎/𝑅 = 1/2 with resolution
Δ𝑥 = 𝑅/32 over 0 < 𝑡/𝑇 < 8 and study the effect of Δ𝑡𝑠/𝑇 on cycle production. To obtain
the VTM we use the Eulerian-based tracking method that will be introduced in §3.4, which is
robust to the presence of cycles. Figure (3-5) shows the evolution of the 𝑓 = 0.5 isosurface.

To avoid inflating the count of cycles by including under-resolved events, we remove
columns of the VTM A(𝑛→𝑛+1) relating to under-resolved parent bubbles, 𝑣𝑛𝑖 < 𝑣res, 2D, as well
as rows relating to under-resolved child bubbles, 𝑣𝑛+1𝑗 < 𝑣res, 2D, where 𝑣res, 2D = 𝜋(2Δ𝑥)2.
After removing under-resolved events, we generate a matrix B(𝑛→𝑛+1) by removing all
elements of the VTM A(𝑛→𝑛+1) that are not involved in a cycle. This is achieved by iteratively
setting any element to zero if it is the only non-zero entry in a row or column, until no such
cases exist. The proportion of the (resolved) volume of dark fluid involved in cycles can then
be written

𝐶𝑛 =

∑︁ [︁
B(𝑛→𝑛+1)v𝑛

]︁∑︁ [︁
A(𝑛→𝑛+1)v𝑛

]︁ . (3.18)

Figure 3-6 shows there is no cycle production for Δ𝑡𝑠 ≪ 𝑇 , a jump in cycle production at
Δ𝑡𝑠 ∼ 𝑇 , and all volume is involved in a cycle for Δ𝑡𝑠 > 𝑇 . Thus, unless Δ𝑡𝑠 ≪ 𝑇 , previous
tracking methods would be unable to provide unique solutions to the flow of volume between
bubbles.
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Figure 3-6: Statistics for 𝐶𝑛, the proportion of total volume involved in cycles, using different
snapshot intervals for the vortical exchange simulation over 0 < 𝑡/𝑇 < 6.

3.4 Volume-conservative Eulerian-based tracking using
Eulerian label advection

As section 3.3 shows, to reliably obtain the VTM, we need more information than just the
Lagrangian properties of bubbles at 𝑡𝑛 and 𝑡𝑛+1. Based on the evolution equation (3.2) from
which the VTM is derived, an obvious source for additional information is the Eulerian
velocity field u during 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1). While some have proposed modifications to the
Lagrangian approach which use u to explicitly provide the non-zero entries of the VTM
(Rubel & Owkes, 2019; Langlois et al., 2016), there is still the uniqueness problem.

Here we propose a novel approach where we solve (3.2) directly. As opposed to
Lagrangian methods, the use of the velocity field u through (3.2) gives a fully Eulerian-based
tracking method which, along with (3.5), allows direct calculation of the VTM A(𝑛→𝑛+1) ,
as outlined in Figure 3-3b. For a numerical advection scheme of c𝑛 to provide an accurate
VTM, we identify two core requirements. The first is that, for the VTM to describe the
movement of air, the velocity used to advect the scalar color function 𝑐 in (2.2) must be
exactly equal to the velocity used to advect c𝑛. As discussed previously, this leads to the
consistency requirement (3.3). The second requirement is that, as described by (3.2), each
component 𝑐𝑛𝑙 of c𝑛 must be conserved, ideally to machine precision.

In this section we describe such an advection scheme, the Eulerian label advection
(ELA) method. The numerical representation of the vector color function is based on the
Volume-of-Fluid (VOF) representation of the scalar color function. The advection scheme
itself is based on the conservative Volume-of-Fluid (cVOF) method of Weymouth & Yue
(2010). Through its close link to cVOF, ELA provides a consistent advection scheme, which
we will show maintains the volume-conservative nature of that approach.
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3.4.1 Discretizing the vector color function

Before deriving ELA to solve (3.2), we define a discretization of the vector color function
c𝑛 (x, 𝑡) by integrating it over each cell 𝛺𝑖 𝑗 𝑘 ,

s𝑛𝑖 𝑗 𝑘 (𝑡) ≡
∫
𝛺𝑖 𝑗𝑘

c𝑛 (x, 𝑡) d𝑉

Δ𝛺𝑖 𝑗 𝑘
. (3.19)

We will call this the vector source fraction field. It is a vector equivalent to 𝑓𝑖 𝑗 𝑘 defined by
(2.14). Recall that the vector color function c𝑛 (x, 𝑡) is initially defined based on CCL at time
𝑡𝑛, as described by (3.1). Noting that point x is only in a bubble 𝑙 if the point x is also in air
(𝑐(x, 𝑡𝑛) = 1), we can integrate (3.1) in the same way as (3.19) to obtain

(𝑠𝑛𝑙 )𝑖 𝑗 𝑘 (𝑡𝑛) =
1

Δ𝛺𝑖 𝑗 𝑘

∫
x∈[𝛺𝑖 𝑗𝑘 ∩ bubble 𝑙]

𝑐(x, 𝑡𝑛) d𝑉 for 𝑙 ∈ 0 . . . 𝑀𝑛 . (3.20)

We can simplify this definition by making an assumption about the CCL method used to
determine if x ∈ bubble 𝑙. Typical CCL algorithms assign all of the air in a cell to a single
bubble. Thus, the integral in the previous equation would be equal to either zero or the
volume of air in the cell. Recalling (2.14), this gives

(𝑠𝑛𝑙 )𝑖 𝑗 𝑘 (𝑡𝑛) =
{︄
𝑓𝑖 𝑗 𝑘 (𝑡𝑛) if 𝛺𝑖 𝑗 𝑘 ∈ bubble 𝑙
0 otherwise

for 𝑙 ∈ 0 . . . 𝑀𝑛 , (3.21)

where 𝛺𝑖 𝑗 𝑘 ∈ bubble 𝑙 simply means the CCL algorithm identified the cell 𝑖 𝑗 𝑘 as part of
bubble 𝑙. Because bubbles are defined to be non-overlapping, we note that at 𝑡 = 𝑡𝑛 no more
than one element of s𝑛𝑖 𝑗 𝑘 (𝑡𝑛) can be non-zero.

With (3.21), at 𝑡 = 𝑡𝑛 we are able to initialize the vector source fraction field s𝑛𝑖 𝑗 𝑘 (𝑡𝑛)
based on the VOF field 𝑓𝑖 𝑗 𝑘 (𝑡𝑛) and the results of a CCL algorithm. This definition of
s𝑛𝑖 𝑗 𝑘 (𝑡𝑛) can also be shown to satisfy the consistency requirement. Integrating (3.3) in the
same way as (3.19) we obtain a discretized consistency requirement,∑︁

𝑙

(𝑠𝑛𝑙 )𝑖 𝑗 𝑘 (𝑡) = 𝑓𝑖 𝑗 𝑘 (𝑡) . (3.22)

Recalling bubbles are non-overlapping and that all air is associated with a bubble, it is clear
that (3.21) gives an initial s𝑛𝑖 𝑗 𝑘 (𝑡𝑛) which satisfies (3.22).

3.4.2 ELA method for evolving the vector source fraction

We now seek a consistent and volume-conservative numerical advection scheme to model
(3.2). The derivation will closely follow the cVOF derivation (Weymouth & Yue, 2010)
presented in section 2.2. First, we integrate (3.2) over a cell 𝛺𝑖 𝑗 𝑘 and apply divergence
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theorem to obtain

𝜕

𝜕𝑡

∫
𝛺𝑖 𝑗𝑘

c𝑛 d𝑉 +
∮
𝜕𝛺𝑖 𝑗𝑘

c𝑛𝑢𝑛 d𝑆 =
∫
𝛺𝑖 𝑗𝑘

c𝑛 (∇ · u) d𝑉 . (3.23)

As in section 2.2, 𝜕𝛺𝑖 𝑗 𝑘 is the surface of the cell and 𝑢𝑛 is the velocity normal to the surface
(using the convention that 𝑢𝑛 > 0 indicates flow out of the cell). For conciseness, we
consider a single cell and drop the “𝑖 𝑗 𝑘” subscripts. Writing in terms of s𝑛 using (3.19) and
rearranging,

Δ𝛺
𝜕s𝑛
𝜕𝑡

= −F𝑛𝑒𝑡 +
∫
𝛺

c𝑛 (∇ · u) d𝑉 , (3.24)

where the vector F𝑛𝑒𝑡 describes the net flux of s𝑛 out of 𝛺. As we discretize (3.24) in time,
to avoid confusion of the snapshot index 𝑛 based on Δ𝑡𝑠 and the fluid-solver time index 𝑘
based on Δ𝑡, we will omit 𝑛 for the rest of this section, e.g., s𝑘 ≡ s𝑛 (𝑡𝑘 ).

As discussed in section 2.2, (Weymouth & Yue, 2010) provide an operator-split method
to solve the evolution of 𝑐 (represented by the VOF field 𝑓 ). For convince, the equation to
go from the VOF field 𝑓 𝑘 at time 𝑡𝑘 to 𝑓 𝑘+1 at 𝑡𝑘+1 = 𝑡𝑘 +Δ𝑡 in an 𝒩 dimensional domain is
repeated here,

Δ𝛺
Δ𝑡

(︂
𝑓 (𝑑) − 𝑓 (𝑑−1)

)︂
= 𝐹𝑑+1/2 − 𝐹𝑑−1/2 + 𝑐̃

𝜕𝑢𝑑
𝜕𝑥𝑑

Δ𝛺 for 𝑑 ∈ 1 . . .𝒩 . (2.40)

Recall that the scalar flux on the positive face (𝐹𝑑+1/2) and negative face (𝐹𝑑−1/2) are
calculated using a second-order interface reconstruction based on 𝑓 (𝑑−1) (section 2.2.1) and
that the dilation term is approximated based on 𝑓 (0) (section 2.2.2). For ELA, we solve
(3.24) using a similar operator-split equation,

Δ𝛺
Δ𝑡

(︂
s(𝑑) − s(𝑑−1)

)︂
= F𝑑+1/2 − F𝑑−1/2 + c̃𝜕𝑢𝑑

𝜕𝑥𝑑
Δ𝛺 for 𝑑 ∈ 1 . . .𝒩 , (3.25)

where F𝑑+1/2 and F𝑑−1/2 are vector flux terms on the positive and negative faces and c̃ is a
vector dilation term. As discussed in section 3.2, consistency arises from the fact that c𝑛 is
advected with the same u as 𝑐. From this, it is natural that each vector flux term should itself
be consistent with the associated scalar flux terms in (2.40), e.g.,∑︁

𝑙

(𝐹𝑙)𝑑+1/2 = 𝐹𝑑+1/2 . (3.26)

If we further require that the vector dilation term is consistent with the scalar dilation term,∑︁
𝑙

(𝑐̃𝑙) = 𝑐̃ , (3.27)

summing (3.25) shows that after each operator-split step the vector source field is consistent
with the VOF field, ∑︁

𝑙

(𝑠𝑙) (𝑑) = 𝑓 (𝑑) . (3.28)
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By extension, (3.22) will always be satisfied. Thus, any operator-split advection scheme for
s of the form (3.25) which satisfies (3.26) and (3.27) will be consistent with cVOF, or any
VOF method that can be written in the same form as (2.40).

In addition to consistency and conservation, it is important that ELA is computationally
efficient. (3.25) is a vector equation which implies solving as many advection equations as
there are bubbles. While perhaps theoretically possible, applying approaches like interface
reconstruction for each individual equation would be computationally infeasible. Instead,
we design ELA to use as much information as possible from cVOF to calculate F𝑑+1/2 and c̃.
For convenience, we define the normalized vector source fraction ŝ as

𝑠̂𝑙 =
𝑠𝑙∑︁
𝑖 𝑠𝑖

, (3.29)

which has the property
∑︁
𝑙 𝑠̂𝑙 = 1. An explicit conservative upwind scheme is used to

determine the composition of the air flux based on the previous operator-split step’s s(𝑑−1)

and the scalar flux 𝐹 from cVOF:

F𝑑+1/2 = 𝐹𝑑+1/2 ·
{︄

ŝ(𝑑−1)
𝑑+1 if 𝐹𝑑+1/2 > 0

ŝ(𝑑−1)
𝑑 if 𝐹𝑑+1/2 < 0

, (3.30a)

F𝑑−1/2 = 𝐹𝑑−1/2 ·
{︄

ŝ(𝑑−1)
𝑑 if 𝐹𝑑−1/2 > 0

ŝ(𝑑−1)
𝑑−1 if 𝐹𝑑−1/2 < 0

. (3.30b)

To describe the vector dilation term based on the scalar dilation term 𝑐̃ from cVOF,

c̃ = 𝑐̃ ŝ(0) . (3.31)

For volume conservation, it is critical that c̃ remain the same throughout the operator-split
steps, so (similar to cVOF) we base it on the initial s(0) .

ELA volume conservation

Recall the three requirements Weymouth & Yue (2010) identify for a volume-conservative
(to machine precision) operator-split advection scheme:

1. flux terms are conservative,
2. the dilation terms sum to zero, and
3. there is clipping due to over or under filling at any step.

For the flux terms, ELA satisfies (3.26), so, by extension from cVOF, the total flux of s is
conservative. Additionally, the use of upwinding in (3.30) guarantees that the flux of each
individual component of s is conservative. For the dilation term, a similar argument is true.
ELA satisfies (3.27) so, by extension from cVOF, the total of the dilation terms sums to
zero. Because each component of c̃ remains constant, each individual element of the dilation
terms also sums to zero. What remains is to prove requirement 3.

Because ELA is consistent with cVOF, (3.28) is true at any step. As proven by Weymouth
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& Yue (2010), cVOF with the Courant restriction

Δ𝑡
𝒩∑︁
𝑑=1

|︁|︁|︁|︁ 𝑢𝑑Δ𝑥𝑑

|︁|︁|︁|︁ < 𝐶 (2.13)

guarantees 0 ≤ 𝑓 (𝑑) ≤ 1 at any step. By extension, ELA satisfies

0 ≤
∑︁
𝑙

(𝑠𝑙) (𝑑) ≤ 1 , (3.32)

establishing that the sum of s(𝑑) cannot over or under fill. However, to show ELA is volume
conservative, we must show that individual components cannot over or under fill, i.e.,

0 ≤ (𝑠𝑙) (𝑑) ≤ 1 (3.33)

for all 𝑙. First, we note that, given (3.32) is true, proving 0 ≤ (𝑠𝑙) (𝑑) proves (3.33). In
Appendix C, by considering all possible combinations of the sign of the velocity on either
face, we prove that 0 ≤ (𝑠𝑙) (𝑑) for all 𝑙 provided the Courant restriction (2.13) is true.

While based on the proof by Weymouth & Yue (2010), the proof in Appendix C is not
a trivial extension because, unlike with cVOF, it is not guaranteed the flux in on one side
of a cell replaces the flux out on the other side, as they could be composed of different
elements of s. Surprisingly, we still find that the Courant restriction required for ELA volume
conservation is no more restrictive than that for cVOF volume conservation. Meaning that
no change in Δ𝑡 is needed to use ELA with cVOF versus cVOF alone.

Finite precision considerations

The ELA algorithm we have described so far is exactly volume conservative and consistent
with cVOF. In practice, floating point calculations have finite precision, so a few modifications
are useful. First, finite precision leads to rounding errors, which may cause an element
(𝑠𝑙) (𝑑) that should go to zero to be either slightly above or below zero. To deal with this,
after calculating each step in (3.25), the following filter is applied,

(𝑠𝑙) (𝑑) ←
{︄

0 if ( 𝑠̂𝑙) (𝑑) < 𝜖mach.

(𝑠𝑙) (𝑑) otherwise
. (3.34)

Here, 𝜖mach. is defined to be the smallest value such that with finite precision 1 + 𝜖mach. ≠ 1.
With this filter, can say that the consistency condition (3.28) is true to machine precision.

Even without the above filter, finite precision means that (3.28) will not be exactly true.
While the error is on the order of machine precision, it can be useful to further minimize this
error as much of the volume conservation proof relies on (3.28). To this end, we can apply
the following filter after (3.34),

s(𝑑) ← 𝑓 (𝑑) ŝ(𝑑) . (3.35)

The performance of ELA with and without this filter are presented in §3.5.2.
Finally, we recall that cVOF implementations often include a filter (2.43) designed to
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suppress spurious whips and ensure symmetry between operations on 𝑓 and 1 − 𝑓 . This
introduces a zero-threshold value 𝜖 𝑓 and a volume conservation error of the same order of
magnitude. To ensure (3.28) is always true, as required for ELA volume conservation, s
must be similarly adjusted by the same 𝜖 𝑓 at the end of the operator split steps:

s𝑘+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ŝ(𝒩) if 1 − 𝑓 (𝒩) < 𝜖 𝑓
0 if 𝑓 (𝒩) < 𝜖 𝑓
s(𝒩) otherwise

. (3.36)

While neither cVOF nor ELA are strictly conservative if 𝜖 𝑓 ≠ 0, the total volume addition/loss
in s is equal to that in 𝑓 . Therefore, ELA continues to satisfy the consistency requirement
and satisfies the necessarily weakened volume-conservation requirement in the sense that it
tracks all the air, including that artificially added/subtracted by (2.43).

3.4.3 Extracting the VTM from the vector source fraction
Using the method described in section 3.4.2 we are able to evolve the vector source fraction
s𝑛𝑖 𝑗 𝑘 (𝑡) in time from its original definition at 𝑡 = 𝑡𝑛. We perform (3.25) at every simulation
time step Δ𝑡 until we reach the next snapshot interval 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡𝑠. From this, we have the
discretized representation

s𝑛𝑖 𝑗 𝑘 (𝑡𝑛+1) =
∫
𝛺𝑖 𝑗𝑘

c𝑛 (x, 𝑡𝑛+1) d𝑉

Δ𝛺𝑖 𝑗 𝑘
. (3.37)

To relate this to the VTM, we start by expanding (3.6) into a summation over all (non-
overlapping) cells in the domain,

𝑞𝑚𝑙 =
∑︁
𝑖 𝑗 𝑘

∫
x∈[𝛺𝑖 𝑗𝑘 ∩ bubble 𝑚]

𝑐𝑛𝑙 (x, 𝑡𝑛+1) d𝑉 . (3.38)

As done for (3.21), we assume the CCL algorithm assign all of the air in a cell to a single
bubble, giving

𝑞𝑚𝑙 =
∑︁

𝛺𝑖 𝑗𝑘∈bubble m

∫
𝛺𝑖 𝑗𝑘

𝑐𝑛𝑙 (x, 𝑡𝑛+1) d𝑉 . (3.39)

Using (3.37), we have

𝑞𝑚𝑙 =
∑︁

𝛺𝑖 𝑗𝑘∈bubble m
Δ𝛺𝑖 𝑗 𝑘 (𝑠𝑙)𝑛𝑖 𝑗 𝑘 (𝑡𝑛+1) . (3.40)

After normalizing using (3.9), we obtain the VTM A𝑛→𝑛+1.
After obtaining A𝑛→𝑛+1, we can use the same CCL results at 𝑡𝑛+1 used to determine

𝛺𝑖 𝑗 𝑘 ∈ bubble m in (3.40) to define a new s𝑛+1𝑖 𝑗 𝑘 with (3.19), and repeat the process of evolving
it using ELA and then extracting A𝑛+1→𝑛+2. Thus, this method provides tracking information
throughout a simulation.
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3.5 Validation for three-dimensional bubble fragmenta-
tion in homogeneous isotropic turbulence

To verify and demonstrate the properties of ELA, we consider the canonical problem
of a low void-fraction distribution of air-bubbles in water (density ratio 𝜌𝑤/𝜌𝑎 = 1000)
fragmented by strong homogeneous isotropic turbulence (HIT). We choose HIT as it is
spatially homogeneous, quasi-steady, and well understood, allowing simple measurement of
averaged turbulence properties, particularly the turbulent dissipation rate 𝜀. Additionally,
multi-phase HIT has been well studied experimentally (e.g., Qi et al., 2020; Martínez-Bazán
et al., 1999a; Vejražka et al., 2018) and serves as a building block for understanding
bubbly-flow near an air entraining free surface. Using this canonical problem, we verify that
ELA is volume conservative and quantify the abundance of loop currents. In Appendix B
this same simulation is used to demonstrate matrix multiplication and the associated trade-off
between cost and accuracy.

3.5.1 Simulation setup
We perform three-dimensional DNS on a triply periodic grid of 2563. For simplicity,
we consider the case where surface tension is negligible compared to the strength of
turbulence and set We = ∞. HIT is created and maintained using a linear forcing method
(Lundgren, 2003; Rosales & Meneveau, 2005) resulting in a turbulent Reynolds number
Re = 𝑢4

rms/𝜀𝜈 = 200 and Kolmogorov scale 𝜂 ≈ Δ𝑥. After turbulence is initialized for one
phase, a population of spherical bubbles with radii between 𝑟𝑚𝑖𝑛 = 3Δ𝑥 and 𝑟𝑚𝑎𝑥 = 15Δ𝑥
following a 𝑟−10/3 power law is randomly distributed without overlap at 𝑡 = 0 such that the
void fraction is 1%. The simulations are performed using the cVOF method described in
section 2.2, with 𝜖 𝑓 = 10−12 used for (2.43) and (3.36). We choose the Informed Component
Labeling (ICL) algorithm developed by Hendrickson et al. (2020) as the CCL method to
provide ELA with contiguous bubbles because it is volume conservative, i.e., all dark fluid
is marked as part of a bubble.3 This allows us to validate that ELA is volume conservative.

For fragmentation of bubbles in HIT, a characteristic time is 𝑡𝑏 = 0.42 𝜀−1/3𝑟𝑚𝑎𝑥2/3,
corresponding to the typical lifetime of the largest bubbles (Martínez-Bazán et al., 1999a).
We run our simulations over 0 < 𝑡/𝑡𝑏 < 2, over which we observe an increase from 215 to 588
resolved bubbles (defined as bubbles with a volume larger than 𝑣res = 4/3π(1.5Δ𝑥)3). The
evolution of the bubble field is shown in figure 3-7 and the bubble size distribution is shown
in figure 3-8. We perform a series of otherwise identical runs using different 𝜏 ≡ Δ𝑡𝑠/𝑡𝑏 (see
table 3-1). For the largest, we choose 𝜏 = 0.1, consistent with recommendations by Chan
et al. (2021a). Figure 3-2 provides an event observed by ELA over this snapshot interval
and the corresponding tracking matrix from a subset of the domain.

3.5.2 Validating ELA volume conservation
Using ELA with the longest snapshot interval (𝜏 = 0.1), we first seek to verify the conservative
nature of ELA. Following Weymouth & Yue (2010), a measure of the typical change in the

3For details on ICL including comparison to other CCL methods, see §2.3
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(a) 𝑡/𝑡𝑏 = 0 (b) 𝑡/𝑡𝑏 = 1 (c) 𝑡/𝑡𝑏 = 2

Figure 3-7: Evolution of the 𝑓 = 0.5 iso-surface in the three-dimensional HIT simulation (without
surface tension).
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Figure 3-8: Evolution of the bubble size distribution 𝑁 (𝑟) in the HIT simulation versus the expected
−10/3 power law. Note, only resolved bubbles (𝑟/Δ𝑥 ≥ 1.5) are considered.

𝜏 = Δ𝑡𝑠/𝑡𝑏 𝐾 = ⟨Δ𝑡𝑠/Δ𝑡⟩ Normalized with (3.35)?

Case La 0.1000 109.9 no
Case Lb 0.1000 109.9 yes
Case S1 0.0500 54.96 yes
Case S2 0.0250 27.50 yes
Case S3 0.0125 13.75 yes
Case S4 0.0063 6.870 yes
Case S5 0.0031 3.434 yes
Case S6 0.0016 1.717 yes

Table 3-1: Summary of different runs performed using the same flow but different ELA settings.
Note, the simulation time step Δ𝑡 is chosen dynamically as described in §2.1.2, so the average value
based on all snapshot intervals is reported for 𝐾 .
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(𝐿1)ELA /𝑉0 (Change)ELA (𝐿1)cVOF /𝑉0 (Change)cVOF

Case La 8.2 × 10−16 −1.9 × 10−12 5.7 × 10−13 1.9 × 10−9

Case Lb 2.2 × 10−17 4.8 × 10−14 " "

Table 3-2: The 𝐿1 and relative change metrics for volume conservation error separated into ELA
contribution and cVOF contribution for HIT simulations over 0 < 𝑡/𝑡𝑏 < 2 corresponding to 𝑇 = 30
snapshot intervals. Note that the 𝐿1 errors are per fluid solver step while relative change errors are
over the entire simulation (∼ 3000 steps).

volume of dark fluid per simulation time step Δ𝑡 is

(𝐿1)cVOF =
1
𝑇𝐾

𝑇−1∑︁
𝑛=0
|𝑉𝑛+1 −𝑉𝑛 | , (3.41)

Here, 𝑇𝐾 is the total number of simulation time steps. The total relative change over the
entire simulation is

(Change)cVOF =
𝑉𝑇 −𝑉0

𝑉0 . (3.42)

We define equivalent metrics for ELA based on the tracking matrices:

(𝐿1)ELA =
1
𝑇𝐾

𝑇−1∑︁
𝑛=0

∥︁∥︁∥︁v𝑛+1 − A(𝑛→𝑛+1)v𝑛
∥︁∥︁∥︁

1
, (3.43)

(Change)ELA =

∑︁ [︂
v𝑇 − Ã(0→𝑇)v0

]︂
∑︁ [︁

v𝑇
]︁ . (3.44)

By comparing the new volume predicted by the VTM to the new volume calculated from the
void fraction field, we measure any volume error in ELA separate from that related to cVOF.

The results for the simulations are shown in table 3-2. We first run ELA without
the additional normalization of (3.35) (Case La). As expected, (𝐿1)cVOF /𝑉0 ∼ O(𝜖 𝑓 ),
indicating that the small growth in cVOF volume error is due to (2.43). Therefore, if 𝜖 𝑓
is changed we expect (𝐿1)cVOF and (Change)cVOF to change proportionally. As s remains
consistent with 𝑓 through (3.36), 𝜖 𝑓 does not affect the ELA metrics in table 3-2. The growth
of the ELA volume conservation error per step, (𝐿1)ELA /𝑉0, is approximately machine
precision, validating that the ELA method is volume conservative to machine precision.

Case La validates that, as expected, ELA is volume conservative to machine precision.
To reduce the accumulation of error related to machine precision, we can use the additional
normalization step of (3.35). Case Lb in table 3-2 shows that this achieves a 1/40 reduction
in the (already near machine precision) error. All further use of the ELA method includes
(3.35) unless stated otherwise.
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Figure 3-9: The average proportion of the volume of resolved bubbles involved in cycles 𝐶𝑛 (a), and
the average rate of change 𝐶𝑛/𝜏 (b), for HIT simulations with different snapshot intervals 𝜏 = Δ𝑡𝑠/𝑡𝑏
(see table 3-1), compared to a linear relationship.

3.5.3 Relationship between cycle generation and snapshot interval

For the HIT simulations, we now evaluate cycle production using the same analysis method
described in §3.3.3. To evaluate the effect of the number of bubbles and events, two different
time periods are considered: an early period 0 < 𝑡/𝑡𝑏 < 1 covering 15 snapshot intervals
with fewer bubbles and events, and a late period 1 < 𝑡/𝑡𝑏 < 2 covering 15 snapshot intervals
with more bubbles and events. Noting that we track all bubbles, not just those that are
resolved (𝑣 > 𝑣res), the largest value of 𝑀𝑛 is 9 × 104 for the early and 2 × 105 for the late
period. To avoid inflating the count of cycles by including under-resolved events, we first
remove columns of A(𝑛→𝑛+1) relating to under-resolved parent bubbles, 𝑣𝑛𝑖 < 𝑣res, and rows
relating to under-resolved child bubbles, 𝑣𝑛+1𝑗 < 𝑣res. By repeating the simulations with
different Δ𝑡𝑠 (see table 3-1), we obtain a range of 𝜏 = Δ𝑡𝑠/𝑡𝑏. The results are shown in figure
3-9.

Previous work on numerical tracking (Chan et al., 2021a; Gao et al., 2021; Rubel &
Owkes, 2019) has identified that over small time intervals, CCL causes chains of spurious
fragmentation and coalescence, as CCL methods struggle to consistently identify distinct
regions of dark fluid separated by lengths on the order of the grid. Generally, interfaces
can be arbitrarily close, making this a fundamental limitation of CCL (Herrmann, 2010).
When tracking bubbles identified by CCL, imposing a minimum Δ𝑡𝑠 typically mitigates
the inclusion of spurious events (Chan et al., 2021a; Gao et al., 2021). As this strategy
is adopted to improve the CCL information provided to tracking, it applies to all tracking
methods, including ELA. Note that the characteristic time period of spurious events, and thus
appropriate minimum Δ𝑡𝑠, is likely sensitive to both the fluid solver and the CCL method.

Cycle production depends on the number of events and number of bubbles, as illustrated
by the difference between the early and late time periods; however, over both time periods
an approximately linear scaling 𝐶𝑛 ∝ 𝜏 is observed. Considering the magnitude of 𝐶𝑛, we
observe that, for 𝜏 = O(0.1) proposed by Chan et al. (2021a), 5% of the resolved volume is
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involved in cycles for the early period and 20% of the resolved volume is involved in cycles
for the late period. This means previous tracking methods would be unable to provide unique
solutions to the tracking matrix, and the differences between solutions could be significant.

Given its Eulerian nature, ELA itself will not introduce cycles, however it is not
necessarily clear which cycles are the result of either physical exchanges of volume (as
illustrated in figure 3-4 and figure 3-5) or spurious events caused by CCL. Because tracking
considers CCL given, ELA cannot directly quantify what portion of these cycles fall into
each category; however, the results in figure 3-9 do suggest that physical cycles are abundant
in this simulation. As 𝐶𝑛 provides a measure of the total cycle production over an interval
𝜏, 𝐶𝑛/𝜏 provides a measure of the rate of cycle production. For small 𝜏 ≲ 10−2, 𝐶𝑛/𝜏
decreases with increasing 𝜏, consistent with the decreasing probability of spurious events.
For the late interval and 𝜏 > 10−2, 𝐶𝑛/𝜏 increases with increasing 𝜏, consistent with the
increasing probability of physical cycles (illustrated in §3.3.3). This suggests that physical
cycles dominate at large 𝜏 in the late interval of this simulation.

Previous Lagrangian tracking methods were often limited to small Δ𝑡𝑠 because their
binary assumption precludes identifying events over long time periods (Chan et al., 2021a)
and their identification of advection is inaccurate over large displacements (Gao et al., 2021).
Due to its Eulerian volume-tracking nature, ELA does not suffer these limitations and is
accurate for large Δ𝑡𝑠. With ELA making large Δ𝑡𝑠 possible, it is now easier to select a
Δ𝑡𝑠 sufficiently large to negate the effect of spurious events caused by CCL. On selecting
Δ𝑡𝑠 in practice, there is also physical motivation, as Δ𝑡𝑠 defines the distinction between a
single event and multiple events, and thus directly affects measured event statistics (Vejražka
et al., 2018; Solsvik et al., 2016). The effect of Δ𝑡𝑠 on the physical meaning of measured
fragmentation statistics will be addressed in Chapter 5.
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Chapter 4

Characterizing the Surface Layer of
Strong Free-Surface Turbulence

In subsequent chapters we will show how each of the bubble evolution mechanisms
(fragmentation in Chapter 5, entrainment in Chapter 6, and degassing in Chapter 7)
depends on the near-surface turbulence, in particular the turbulent dissipation rate 𝜀 and
the characteristic turbulent velocity 𝑢rms. To apply any of the subsequent models we
develop for these evolution mechanisms, one needs an accurate method to predict the
near-surface turbulence. Therefore, before we address bubble evolution, this chapter focuses
on characterizing air entraining free-surface turbulence, particularly the surface layer where
air and water are highly mixed and turbulence modeling is the most challenging.

4.1 Introduction
For free-surface turbulence, the characteristic velocity is the turbulence fluctuations 𝑢rms
and the characteristic length scale is 𝐿𝑇 = 𝑢3

rms/𝜀, where 𝜀 and 𝑢rms are measured near the
surface. As discussed in §1.1 the primary quantity for characterizing FST is the turbulent
Froude number (squared),

Fr2
𝑇 =

𝑢2
rms
𝐿𝑇g

, (1.1)

or equivalently Fr2
𝑇 = 𝜀/𝑢rmsg. For Fr2

𝑇 ≪ 1 the free surface is only slightly deformed and
vertical turbulent fluctuations near the surface are suppressed, referred to as the blockage
effect. The blockage effect’s suppression of vertical fluctuations and corresponding transfer
of energy to horizontal fluctuations leads to highly anisotropic, quasi-two-dimensional
turbulence (Shen et al., 1999; Guo & Shen, 2010; Ruth & Coletti, 2024). The strength of
the blockage effect decreases with increasing Fr2

𝑇 . Recently, Yu et al. (2019) observed that
for very large Fr2

𝑇 the near-surface turbulence is nearly isotropic. They named this regime
strong FST and theorized it may correspond to the onset of entrainment; however, the critical
Fr2
𝑇 above which the strong FST regime is obtained was not determined.

The most observable effect of large Fr2
𝑇 FST (isotropic or not) is that the free surface

becomes highly distorted, to the point where it breaks apart forming bubbles (and droplets)
(Brocchini & Peregrine, 2001a). Brocchini & Peregrine (2001b) provide a notational sketch
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Figure 4-1: Notational sketch of the surface layer from ‘The dynamics of strong turbulence at free
surfaces. Part 2. Free-surface boundary conditions’ by Brocchini & Peregrine (2001b). © 2001
Cambridge University Press.

of the surface layer (reprinted in figure 4-1), where the mixing of the air and water means
there is no clearly distinguishable free surface. In place of the free surface is a region where
water and air are highly mixed, called the surface layer. While the creation of bubbles and
subsequent evolution is our ultimate interest, these processes are driven by the near-surface
turbulence, especially the turbulence within the surface layer. Due to the highly variable
density in this surface layer, turbulence modeling is a particular challenge (Brocchini &
Peregrine, 2001a; Hendrickson & Yue, 2019).

One air entraining turbulent flow which is often studied is supercritical open-channel
flow (Chanson, 1996). One approach to modeling the boundary layer turbulence in this flow
is to separately model the surface layer (referred to as turbulent wavy layer) and the turbulent
boundary layer beneath (Killen, 1968; Kramer & Valero, 2023). We note that in these flows
there is typically not a large separation of scales: the height of the surface layer is similar to
the total depth of the flow. This implies a close relationship between the dynamics in the
surface layer and the turbulent boundary layer beneath, making it a challenge to generalize
models for open-channel flow to general free-surface flow. Looking at free-surface wakes,
Hendrickson et al. (2019) noted that the resulting air entraining FST bears little similarity
to open-channel flow. For describing surface layers in general free-surface flow, Brocchini
& Peregrine (2001b) provide a theoretical framework based on phase-weighted averaging.
For the case where the surface layer is thin relative to the large-scale features of the flow,
Brocchini (2002) shows theoretically how the surface layer could be treated as a modified
boundary condition in 𝑘-𝜀 type Reynolds-averaged Navier Stokes (RANS) simulations.

We consider air entraining FST where the mechanisms that generate turbulence in the
water are sufficiently separate (in either distance or scale) from the surface layer. We study
this using direct numerical simulation (DNS) of a canonical example of such a flow, where
homogeneous, statistically steady turbulence is generated in a region deep beneath the free
surface (Guo & Shen, 2009). In §4.2 we develop a quantitative definition of the surface
layer thickness 𝛿𝑠, which unlike previous definitions (Brocchini & Peregrine, 2001b) is
independent of the (Fr2

𝑇 -dependent) quantity of bubbles deep beneath the surface and makes
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no assumptions about the distribution of intermittency. Using measurements from DNS
across a wide range of Fr2

𝑇 (described in §4.3), in §4.4 we quantify the distribution of
intermittency, confirming that it collapses after scaling by 𝛿𝑠 and showing that it is well
described by a logistic distribution. In §4.5 we study the turbulence in the surface layer.
We show that Fr2

𝑇 > 0.1 is the criteria for strong FST, when blockage effects are small and
the turbulence in the surface layer is isotropic. For strong FST, we find that the turbulence
within the surface layer only depends on 𝛿𝑠 and the turbulence quantities at the bottom of
the surface layer. These results confirm the possibility of modeling the surface layer as a
modified boundary condition in RANS, especially for Fr2

𝑇 > 0.1. In §4.6 we show how the
two necessary quantities for such a boundary condition, the surface layer thickness 𝛿𝑠 and
the work done on the surface layer𝑊 , scale with Fr2

𝑇 .

4.2 Defining the surface layer in free-surface turbulence
The defining property of the surface layer is the heterogeneous mixture of air and water. As
introduced in Chapter 2, the mixture of any two immiscible phases can be described by a
binary color function (2.2). For air and water,

𝑐(x, 𝑡) ≡
{︄

0 if x ∈ air
1 if x ∈ water

. (4.1)

Our interest is the average behavior of the surface layer, and we consider the simplest case
where FST is horizontally and temporally homogeneous. Averaging along the homogeneous
dimensions,

· ≡
∭
· d𝑥 d𝑦 d𝑡∭
d𝑥 d𝑦 d𝑡

, (4.2)

we define the intermittency factor (Brocchini & Peregrine, 2001b)

𝛾(𝑧) ≡ 𝑐(x, 𝑡) , (4.3)

which here is only a function of depth 𝑧. This intermittency factor gives the average portion
of volume occupied by water, with 𝛾 = 1 corresponding to all water and 𝛾 = 0 all air. The
opposite, 1 − 𝛾, is often referred to as the void fraction.

Because the free surface is highly distorted, we first need a definition of the mean
free surface. While alternative definitions may be more appropriate for wave-driven flows
(Brocchini & Peregrine, 1996, 2001b), for FST we find a simple definition is sufficient. We
define the mean free-surface height 𝜂̄ as the height where air and water are evenly mixed:

𝛾(𝑧 = 𝜂̄) = 0.5 . (4.4)

We note that, because FST entrains air bubbles deep beneath the free surface, 𝜂̄ will be
higher than the location of the quiescent free surface. In this way, 𝜂̄ is a measure of the
entire bubble population, which is the focus of subsequent chapters. In this chapter, our
interest is the turbulence near the free surface rather than bubbles deep beneath, so we will
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focus on depths relative to the mean free surface, 𝑧 − 𝜂̄.

Recalling that the defining property of the surface layer is the mixture of air and water, a
common way to define the surface layer is to choose a 𝛾max and 𝛾min, and define the surface
layer as the depths 𝑧 where 𝛾max > 𝛾(𝑧) > 𝛾min (Brocchini & Peregrine, 2001b). Others
express this in terms of density 𝜌max > 𝜌(𝑧) > 𝜌min (Hendrickson & Yue, 2019), which is
equivalent. The first challenge is that the choice of these limits is somewhat arbitrary. To
justify a choice, Brocchini & Peregrine (2001b) start by considering a single-valued free
surface where the instantaneous free-surface height 𝜂(𝑥, 𝑦, 𝑡) follows a Gaussian distribution
with mean 𝜂̄ and variance 𝜎2. It can be shown that this gives an intermittency factor

𝛾Gaussian(𝑧) = 1
2

[︃
1 − erf

(︃
𝑧 − 𝜂̄√

2𝜎

)︃]︃
. (4.5)

Using 𝑧 − 𝜂̄ ∈ [−3𝜎, 3𝜎] to define the surface layer gives 𝛾min ≈ 0.001 and 𝛾max ≈ 0.999.
In §4.4 we will show that FST produces a non-negligible volume of bubbles deep beneath the
free surface, causing 𝛾 to approach 1 very slowly. Due to these bubbles, we find 𝛾max ≈ 0.999
overestimates the depth of the surface layer. More generally, the challenge here is that the
definition of the surface layer depends on the tail behavior of 𝛾, which may be only indirectly
linked to the behavior closest to the mean free surface.

As a more robust definition of the surface layer, we use the behavior of 𝛾 at the mean free
surface rather than the tail behavior far from the mean free surface. To do this, we define a
free surface thickness

𝛿𝑠 ≡ 6√
2𝜋

(︄
d𝛾
d𝑧

|︁|︁|︁|︁
𝑧=𝜂̄

)︄−1

. (4.6)

and define the surface layer as 𝑧 − 𝜂̄ ∈ [−𝛿𝑠/2, 𝛿𝑠/2]. We choose the constant 6/
√

2𝜋 so that
in the case where 𝛾 = 𝛾Gaussian, 𝛿𝑠 = 6𝜎 and our definition of the surface layer is equivalent
to 𝑧 − 𝜂̄ ∈ [−3𝜎, 3𝜎].

Asserting that 𝛿𝑠 characterizes the surface layer, it is useful to define an aptly nondimen-
sionalized depth,

𝑧∗ ≡ 𝑧 − 𝜂̄
𝛿𝑠

, (4.7)

and the surface layer is 𝑧∗ ∈ [−0.5, 0.5]. Using DNS of FST at a wide range of Fr2
𝑇 , we

will show in section 4.4 and section 4.5 that this scaling indeed characterizes the surface
layer. Specifically, scaling by 𝑧∗ and turbulence properties measured at 𝑧∗ = −0.5 collapses
measurements in the surface layer across Fr2

𝑇 ; and 𝑧∗ = −0.5 separates the surface layer
where turbulence is directly affected by the free surface from the region beneath only
indirectly affected by the free surface. These two insights suggest the possibility of distinct
turbulence closure modeling within the surface layer, and in section 4.6 we explore this and
show how 𝛿𝑠 can be predicted a priori.
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4.3 Direct numerical simulation of statistically steady
forced free-surface turbulence

To study FST, we pick a flow which isolates FST from other free surface mechanisms (e.g.,
waves) and is homogeneous in the horizontal and temporal dimensions. This is obtained
with forced free-surface turbulence (forced FST), where isotropic turbulence is continuously
forced deep beneath the surface to obtain statistically steady turbulence at the surface. This
simulation setup was first described by Guo & Shen (2009) for small Fr2

𝑇 and has recently
been extended to moderate and large Fr2

𝑇 (Calado & Balaras, 2025; Gaylo & Yue, 2025).
We use the forcing method described in section 2.1.5 to maintain isotropic turbulence in

a bulk region deep beneath the free surface. Recall, this adds a linear forcing term

f = 𝐴u′′F (𝑧) . (2.32)

to the Navier-Stokes equation, (2.5). We choose 𝐴 dynamically using (2.30), where we set
the target dissipation rate 𝜀target = 1. The horizontal domain length is 2𝜋 in both 𝑥 and 𝑦,
which gives 𝑢rms ≈ 1 in the forcing region (Rosales & Meneveau, 2005). In this way, we
choose the simulation setup to give characteristic turbulent scales of unity within the forcing
region. An equivalent interpretation is that we use the characteristic turbulent scales within
the forcing region to nondimensionalize all values in the simulation, i.e., to go from (2.1b)
to (2.5).

Following Guo & Shen (2009), we use

F (𝑧) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 𝑧𝑐 > 𝑙𝑏 + 𝑙𝑑
1
2

(︂
1 − cos

[︂
𝜋
𝑙𝑑
(𝑧𝑐 − 𝑙𝑏 − 𝑙𝑑)

]︂ )︂
𝑧𝑐 ≤ 𝑙𝑏 + 𝑙𝑑

1 𝑧𝑐 ≤ 𝑙𝑏
; 𝑧𝑐 ≡ |𝑧 + 𝑙 𝑓 + 𝑙𝑑 + 𝑙𝑏 | (4.8)

to define the region deep beneath the free surface where forcing is applied. The forcing is
primarily contained to a forcing region of height 2𝑙𝑏 = 3𝜋 centered around 𝑧𝑐 = 0. There is
damping region 𝑙𝑑 = 𝜋/2 on either side of the forcing region, then a free length 𝑙 𝑓 = 𝜋/2
before the bottom of the domain or the quiescent free surface at 𝑧 = 0. For the majority
of the simulations there is an air gap of 𝜋 above the quiescent free surface, to give a total
domain height 6𝜋. For Fr2 > 2, the air gap is increased to 1.75𝜋 to avoid the top boundary
affecting the turbulence.

For all simulations, we set Re = 200 and use a constant grid 2562 × 768 or 2562 × 864
depending on the air gap. This gives a grid spacing Δ ≈ 0.025. Comparing the grid
spacing to the Kolmogorov microscale 𝜂𝑇 , in the bulk region where turbulence is strongest
𝜂𝑇/Δ ≈ 0.78, and near the free surface where we are interested 𝜂𝑇/Δ ≈ 1.8. As discussed in
section 2.1.1, this is sufficient resolution for DNS of air entraining FST. To obtain different
conditions, we change Fr2 and We in (2.5), with We = ∞ corresponding to cases where
surface tension is not modeled. Table 4-1 shows forced FST simulations performed for the
analysis of turbulence here. In this chapter our focus is the scaling of turbulence with Fr2

𝑇
so all simulations use We = ∞. In Chapter 6 we will address the effects of (weak) surface
tension.
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Fr2 We 𝜂̄ 𝛿𝑠 𝑢rms 𝜀 𝐿𝑇 Fr2
𝑇 Re𝑇

0.3 ∞ 0.010 0.41 0.27 0.025 0.81 0.03 44
0.6 ∞ 0.030 0.77 0.30 0.030 0.89 0.06 53
0.9 ∞ 0.080 1.08 0.34 0.030 1.32 0.08 90
1.2 ∞ 0.124 1.29 0.27 0.030 0.69 0.13 38
1.5 ∞ 0.180 1.40 0.27 0.028 0.73 0.15 40
1.8 ∞ 0.268 1.60 0.30 0.030 0.85 0.18 50
2.1 ∞ 0.345 1.73 0.27 0.027 0.70 0.21 37
2.4 ∞ 0.363 1.78 0.26 0.024 0.74 0.22 39
2.7 ∞ 0.543 1.76 0.26 0.024 0.69 0.26 35

Table 4-1: List of forced FST simulations used for turbulence analysis. Turbulence properties
𝑢rms and 𝜀 are measured at the bottom of the surface layer (𝑧∗ = −0.5). The characteristic
length scale 𝐿𝑇 = 𝑢3

rms/𝜀 is used to calculate the near-surface turbulent Froude number (squared)
Fr2

𝑇 = (𝑢2
rms/𝐿𝑇 )Fr2 and the turbulent Reynolds number Re𝑇 = (𝑢rms𝐿𝑇 )Re.

Simulations are initialized at 𝑡 = 0 from a random velocity in the bulk and a quiescent
free surface at 𝑧 = 0 and then run for at least 400 bulk eddy turnover times. We consider total
gravitational potential energy, turbulence statistics, the bubble population, and entrainment
statistics to assess convergence to a steady state. We find that total gravitational potential
energy,

PEg =
1

Fr2

∭
𝜌𝑧 d𝑉 − 𝐶 (4.9)

where the constant 𝐶 is chosen such that PEg = 0 at 𝑡 = 0, is the most useful for assessing
steady state convergence. One concern for these horizontally periodic simulations is that
a standing wave will form. Recalling the horizontal domain length is 2𝜋, the standing
wave would have wave number 𝜅 ≈ 1 and (by the deep-water dispersion relation) frequency
𝜔 ≈ 1/Fr. The characteristic timescale of the turbulence in the bulk 𝑇 = 𝐿/𝑈 is unity, and
we could expect some coupling if 𝑇/𝜔 is close to an integer multiple. Indeed, we had some
trouble with Fr2 = 0.9 (where 𝑇/𝜔 = 0.95 ≈ 1), but were able to results by considering an
earlier time before the standing wave developed. We were unable to obtain a steady state for
Fr2 = 3.3 (where 𝑇/𝜔 = 1.82 ≈ 2).

Figure 4-2 shows a representative rendering near the free surface of a simulation once
its reached steady state. After a statistically steady state is reached at 𝑡 = 𝑡0, steady-state
statistics are obtained over 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇sim]. For the turbulence analysis in this chapter, we
fix 𝑇sim = 128. Over this period, we use 400 evenly spaced samples for temporal averaging
in (4.2).

While the simulation setup allows us to prescribe the turbulence levels in the bulk region,
our interest is the turbulence levels near the surface. Guo & Shen (2009) provide an empirical
fit for Fr2 ≪ 1; however, the near surface turbulence is not known a priori. Instead, we
measure the near surface turbulence a posteriori and calculate new non-dimensional numbers
to properly characterize the near-surface turbulence. At 𝑧∗ = −0.5, we measure the turbulent
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Figure 4-2: Rendering of a forced FST simulation (Fr2 = 1.2 and We = 200) showing the free
surface and bubbly flow beneath. Scaling to match Earth gravity and air-water surface tension and
density, each square on the background grid is 1.09cm across.

kinetic energy
𝜌𝑘̃ ≡ 1

2𝜌u · u , (4.10)

which gives a characteristic velocity 𝑢rms =
√︁

2𝑘̃/3, and the dissipation rate

𝜌𝜀 ≡ 𝜏𝑖 𝑗 𝜕𝑢𝑖/𝜕𝑥 𝑗 . (4.11)

Both are shown in table 4-1. These quantities define near-surface nondimensional numbers,
most relevant here is the turbulent Froude number (squared) Fr2

𝑇 = 𝜀/𝑢rmsg. In §4.5 we
will show that the turbulence levels at 𝑧∗ = −0.5 best characterize the turbulence within the
surface layer.

4.4 Intermittency in the surface layer

From the DNS results, we start by analyzing the intermittency factor 𝛾(𝑧). Figure 4-3 shows
𝛾(𝑧) for the range of Fr2

𝑇 , before and after scaling relative depth 𝑧 − 𝜂̄ by surface layer
thickness 𝛿𝑠. Given 𝛿𝑠 is defined by the derivative of 𝛾 at 𝑧 = 𝜂̄, the distributions necessarily
collapse at the mean free surface. However, we see that scaling by 𝛿𝑠 also does a good job
collapsing the distribution of 𝛾(𝑧) throughout the surface layer. For 𝑧∗ < −0.5 we do see
some small Fr2

𝑇 -dependent differences, and in section 4.4.1 we will confirm that this is the
result of Fr2

𝑇 -dependent bubble entrainment rates, rather than any difference in the nature of
the surface layer. In section 4.4.2 we will investigate the shape of 𝛾(𝑧) and show that it is
closer to a logistic distribution rather than the Gaussian distribution discussed by Brocchini
& Peregrine (2001b).
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Figure 4-3: Intermittency factor 𝛾 as a function of (a) depth relative to the mean free surface and (b)
depth scaled by surface layer thickness. (——) indicated the mean free surface 𝜂̄ and in (b) (- - - -)
shows the extent of the surface layer.

4.4.1 Separating out the effects of bubbles and droplets

The intermittency factor 𝛾 includes the effects of three different types of features: the free
surface, bubbles, and droplets. To separate these, we start by applying ICL (Hendrickson
et al., 2020, see also §2.3) to identify contiguous regions of air that are disconnected from
the bulk region of air above the free surface (bubbles) and contiguous regions of water that
are disconnected from the bulk region of water below the free surface (droplets). From this
post-processing, we can define two new binary color functions,

𝑐𝐷 (x, 𝑡) ≡
{︄

1 if x ∈ droplet of water
0 otherwise

, (4.12a)

𝑐𝐵 (x, 𝑡) ≡
{︄
−1 if x ∈ bubble of air
0 otherwise

. (4.12b)

Subtracting these from the original color function, we obtain a third binary color function

𝑐0 ≡ 𝑐 − (𝑐𝐷 + 𝑐𝐵) , (4.12c)

which describes the mixture of air and water if all bubbles were filled with water and
all droplets replaced by air. This 𝑐0 isolates free-surface effects. Figure 4-4 shows a
representative example of splinting the original color function 𝑐 into these three color
functions.

Qualitatively, we note some key differences between figure 4-4 from DNS and figure 4-1,
the sketch by Brocchini & Peregrine (2001b). Despite the high Fr2

𝑇 , DNS shows an intact free
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(a)

(b) (c) (d)

Figure 4-4: Two-dimensional slice over 𝑧∗ ∈ [−1, +1] from the Fr2
𝑇 = 0.13 simulation showing:

(a) the original color function 𝑐; (b) the free-surface color function 𝑐0; (c) the droplet color function
𝑐𝐷; and (d) the bubble color function 1 + 𝑐𝐵. Color scale from 0 (white) to 1 (blue).

surface is still easily identifiable. The easily identifiable free surface is also apparent in the
three-dimensional rendering in figure 4-2. This observation is consistent with experimental
work on open-channel flow. While the surface layer appears to the human eye like a uniform
mixture of air and water, high-speed photography shows the free surface, while highly
distorted, is still mostly intact (Killen, 1968; Wilhelms & Gulliver, 2005).

To quantify the air-water mixture in the surface layer, we apply averaging like in (4.3) to
each of the three new color functions to obtain 𝛾0, 𝛾𝐵, and 𝛾𝐷 , shown in in figure 4-5. These
split the intermittency factor into the contributions from each of the three phenomenon,

𝛾 = 𝛾0 + 𝛾𝐵 + 𝛾𝐷 . (4.13)

By rough order-of-magnitude, we see 𝛾0 is 100 times larger than 𝛾𝐵, which is 100 times
larger than 𝛾𝐷 . For droplets, we see a peak in 𝛾𝐷 within the upper surface layer (𝑧∗ ≈ 0.2)
and then a rapid decay with increasing height. The behavior for bubbles is very different:
−𝛾𝐵 increases with increasing depth throughout the surface layer, and then only very slowly
decays with further increasing depth. Because 𝜌𝑎/𝜌𝑤 ≪ 1, the mass of a bubble is negligible
compared to the water surrounding it, allowing the turbulence in the water to advect the
bubble deep beneath the surface. As expected, −𝛾𝐵 increases with Fr2

𝑇 , as bubble entrainment
increases as Fr2

𝑇 increases (see Chapter 6).

Focusing on the free surface effects, we see in figure 4-5 that the distribution of 𝛾0
collapses very well when scaling by 𝑧∗. Because 𝛾𝐷 is so small, droplet effects are negligible.
The small Fr2

𝑇 -dependence of 𝛾 for 𝑧∗ < 0 in figure 4-3b is confirmed to be because of
bubbles. For significantly larger bubble void fractions (i.e., larger Fr2

𝑇 ) one may need
to calculate 𝛿𝑠 using 𝛾0 rather than 𝛾 in using (4.6); however, for these simulations the
difference is negligible.
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Figure 4-5: The three sub-components of intermittency factor 𝛾 across a range of Fr2
𝑇 (see figure 4-3a

for color legend). 𝛾0 describes the free surface, 𝛾𝐵 bubbles, and 𝛾𝐷 droplets. Note the difference in
magnitude of the horizontal axes.

4.4.2 Describing the distribution of intermittency

We now consider the distribution of the intermittency factor. To highlight the tail-behavior
of the distribution, figure 4-6 shows the derivative of intermittency with 𝑧∗. In general, we
see tail behavior like

− d𝛾/d𝑧 ∝ exp [|𝑧 |] , (4.14)

especially for the upper tail (𝑧∗ > 0). This is opposed to − d𝛾/d𝑧 ∝ exp[𝑧2] predicted by
(4.5). Instead of Gaussian, this tail behavior is characteristic of a logistic distribution,

𝛾Logistic(𝑧) = 1
2

[︃
1 − tanh

(︃
𝑧 − 𝜂̄
𝑠

)︃]︃
. (4.15)

The behavior of 𝛾0 (figure 4-6b) is generally the same as 𝛾 (figure 4-6a), demonstrating
that this is logistic behavior is the result of free-surface phenomenon rather than droplets.
We can compare this result to experiments by Ruth & Coletti (2024), who studied a similar
horizontally and temporally steady FST forced from below, but at Fr2

𝑇 ≪ 1 where the
free surface is not broken. For such a single-valued surface, − d𝛾/d𝑧 is equivalent to the
probability distribution function of free surface deformations. Their results also appear
to follow ∝ exp[|𝑧 |] (Ruth & Coletti, 2024, Figure. 5a). An interpretation of the logistic
distribution of 𝛾 comes from Wacławczyk (2021), who noted analogies between the effects
of macroscopic turbulence and mesoscopic thermal fluctuations on intermittency at the
respective scales.

While the logistic distribution does a much better job than the Gaussian distribution
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Figure 4-6: Distribution of (a) total intermittency and (b) intermittency excluding droplets and
bubbles across a range of Fr2

𝑇 (see figure 4-3a for color legend). Distributions are compared to (– – –)
𝛾Gaussian from (4.5) and (——) 𝛾Logistic from (4.15). Vertical (- - - -) show the extent of the surface
layer.

at describing intermittency 𝛾, we do note that for the lower tail (𝑧∗ < 0) the distribution
of 𝛾 is more complicated. Beneath the surface layer (𝑧∗ < −0.5) there is a larger tail than
even predicted by the logistic distribution (4.15). While removing the effect of bubbles
with 𝛾0 reduces the tail, there is still a larger tail. This can be understood by examining
𝑐0 in figure 4-4b. Even after removing bubbles, there are still pockets of air which, in
the two-dimensional slice of the domain, appear separate from the bulk air above the free
surface. In three dimensions it is clear that these are long filaments of air that can reach deep
beneath the free surface while still being connected to the bulk air above. These filaments
are presumably the result of bubbles that recently reconnected to the surface (degassing)
or are soon to disconnect from the surface to form a bubble (entrainment), making it a bit
unclear if filaments should be treated like free-surface phenomenon (as done here) or bubble
phenomenon.

4.5 Turbulence in the surface layer

We now examine the turbulence in and around the surface layer. First, section 4.5.1 examines
the isotropy, showing that the transition to strong FST, where near-surface turbulence is
nearly isotropic (Yu et al., 2019), happens at the critical turbulent Froude number Fr2

𝑇 = 0.1.
In section 4.5.2 we examine the terms in the averaged vertical momentum (𝜌𝑤) conservation
equation, and in section 4.5.3 we examine the terms in the averaged kinetic energy (𝜌𝑘̃)
conservation equation. Throughout this analysis we will show that relevant properties
collapse across a wide range of Fr2

𝑇 when properly scaled by 𝑧∗, and that, partially for strong
FST (Fr2

𝑇 > 0.1), the free surface is not felt by the turbulence outside of the surface layer,
with 𝑧∗ = −0.5 being the transition point. In section 4.6 we discuss how these insights can
be applied to RANS turbulence modeling.
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Figure 4-7: (a, b) Isotropy metric 𝐽 and (c) relative contributions of vertical fluctuations 𝜙 across a
range of Fr2

𝑇 (see figure 4-3a for color legend).

4.5.1 Isotropy
For weak FST (Fr2

𝑇 ≪ 1), the restoring force of gravity prevents large deformations of the
free surface, suppressing vertical fluctuations. This blockage effect creates highly anisotropic
turbulence (Shen et al., 1999; Guo & Shen, 2010; Ruth & Coletti, 2024). However, as
Fr2
𝑇 increases the strength of the turbulence increases relative to gravity. Yu et al. (2019)

show that for sufficiently large Fr2
𝑇 the blockage effectively disappears and the near-surface

turbulence is nearly isotropic. Calado & Balaras (2025) show that for more moderate Fr2
𝑇

vertical fluctuations are partially suppressed. It is now known what Fr2
𝑇 is the transition

between moderate FST where vertical fluctuations are partially suppressed and strong FST
where the turbulence is nearly isotropic.

A formal way to quantify isotropy is the isotropy metric

𝐽 ≡ 1 − 9
(︂

1
2𝑏𝑖 𝑗𝑏𝑖 𝑗 − 𝑏𝑖 𝑗𝑏 𝑗 𝑘𝑏𝑘𝑖

)︂
, (4.16)

where 𝑏𝑖 𝑗 ≡ 𝑢𝑖𝑢 𝑗/𝑢𝑘𝑢𝑘 − 𝛿𝑖 𝑗/3 is the anisotropy tensor. 𝐽 = 1 corresponds to perfectly
isotropic turbulence, and 𝐽 = 0 corresponds to either one- or two-component turbulence
(Pope, 2000). Figure 4-7a and 4-7b show 𝐽 as a function of depth, unscaled and scaled by
𝛿𝑠 respectively. First, we observe that scaling by 𝛿𝑠 does a very good job collapsing the
behavior of 𝐽 with depth. Across all Fr2

𝑇 , there is a local minimum in the isotropy metric at
𝑧∗ ≈ −0.25 suggesting this is where the blockage effect is strongest.

Transition from moderate to strong FST

Figure 4-8 shows the values of 𝐽 at the local minimum. This result shows a clear transition
from moderate FST to strong FST at Fr2

𝑇 ≈ 0.1. For Fr2
𝑇 > 0.1 we observe nearly isotropic
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Figure 4-8: Minimum value of the isotropy metric 𝐽 in the lower surface layer (𝑧∗ ∈ [−0.5, 0]) as
a function of Fr2

𝑇 , with the approximate transition from moderate to strong FST indicated by the
vertical dashed line at Fr2

𝑇 = 0.1.
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Figure 4-9: Comparison of one-dimensional turbulent energy spectra at 𝑧 = 0 between moderate and
strong FST. 𝐸11 ≈ 𝐸22, so for clarity the horizontal components are averaged.

turbulence (𝐽 ≈ 0.95), as expected for strong FST. For Fr2
𝑇 < 0.1 we see a moderate FST

regime where turbulence becomes more anisotropic as Fr2
𝑇 decreases, although 𝐽 is still far

from 𝐽 ≈ 0 characteristic of weak FST.
In addition to measuring isotropy, we examine the turbulence energy spectrum at 𝑧 = 0.

From the momentum p ≡ 𝜌u measured at 𝑧 = 0, we apply Fourier analysis and average
over 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇sim] to obtain the one-dimensional (in the 𝑥-direction) energy spectrum
𝐸𝑖𝑖, normalized such that

∫
(𝐸11 + 𝐸22 + 𝐸33) d𝜅 = 1. Figure 4-9 compares the spectra

of moderate and strong FST. For moderate FST, we see that the horizontal fluctuations
are stronger than the vertical fluctuations at all scales and that 𝐸 ∝ 𝜅−3, characteristic of
two-dimensional turbulence (Kraichnan, 1967). For strong FST, we see that the turbulence
is isotropic at all scales (𝐸11 ≈ 𝐸22 ≈ 𝐸33 for all 𝜅) and that there is a range of 𝜅 where
𝐸 ∝ 𝜅−5/3, consistent with the Kolmogorov inertial sub range of isotropic turbulence.

77



Behavior of isotropy in and around the surface layer

Having established that Fr2
𝑇 = 0.1 separates moderate from strong FST, for each we now

examine the behavior of isotropy in and around the surface layer. Returning to figure 4-7b,
the first and most important observation is that for strong FST there is no effect of the free
surface on isotropy beneath the surface layer (i.e., 𝐽 ≈ 1 for 𝑧∗ < −0.5). This is the first
indication that, for strong FST, turbulence beneath the surface layer does not directly feel the
presence of the free surface. This observation will form the basis of the surface layer model
we develop in section 4.6.

We now investigate isotropy in the surface layer. The cause of anisotropy in FST is the
effect of gravity on vertical fluctuations, so it is also useful to consider the relative magnitude
of vertical fluctuations,

𝜙 ≡ 3𝑤𝑤/𝑢𝑘𝑢𝑘 , (4.17)

shown in figure 4-7c. For moderate FST, we see 𝜙 < 1 below and throughout the surface
layer, indicating that vertical fluctuations are suppressed. Focusing on strong FST, we see
that in the lower surface layer (𝑧∗ ∈ [−0.5, 0]) vertical fluctuations are suppressed, but in
the upper surface layer (𝑧∗ ∈ [0, 0.5]) 𝜙 > 1, indicating that vertical fluctuations are in fact
amplified. This helps explain the shape of 𝐽 in strong FST. By symmetry, our FST flow will
satisfy 𝑢𝑢 ≈ 𝑣𝑣 and 𝑢𝑣 ≈ 0, from which one can show

𝐽 ≈ 1
4 𝜙 (3 − 𝜙)2 (4.18)

For 𝜙 to go from < 1 in the lower surface layer to > 1 in the upper surface layer, it must pass
through 𝜙 = 1 around the mean free surface. This explains why near perfect isotropy (𝐽 ≈ 1)
is observed at the mean free surface (𝑧∗ = 0) for strong FST (see figure 4-7b).

4.5.2 Momentum
We now examine the vertical momentum equation. We define density fluctuations 𝜌′ ≡ 𝜌− 𝜌,
in which case the vertical component of (2.1), neglecting surface tension, can be written in
conservative form as

𝜕𝜌𝑤

𝜕𝑡
= −∇ · (u𝜌𝑤) − 𝜕𝑝𝑑/𝜕𝑧 + 𝜕𝜏𝑖3/𝜕𝑥𝑖 + 𝜌′g . (4.19)

For pressure we consider dynamic pressure 𝑝𝑑 = 𝑝− 𝑝ℎ, where the true hydrostatic pressure1

is defined
𝑝ℎ (𝑧) ≡ 𝑝0 + g

∫ 𝑍𝑚𝑎𝑥

𝑧
𝜌(𝑧′) d𝑧′ , (4.20)

with 𝑝0 as some reference pressure. Averaging (4.19) using (4.2) and splitting the Reynolds
stress into two terms, 𝜌𝑤𝑤 = 𝜌 𝑤𝑤 + 𝜌′𝑤𝑤, we are left with four momentum flux terms,

0 = − 𝜕
𝜕𝑧

(︂
𝜌 𝑤𝑤 + 𝜌′𝑤𝑤 + 𝑝𝑑 − 𝜏33

)︂
. (4.21)

1This true hydrostatic pressure is time-independent, unlike the pseudo hydrostatic pressure (2.7) used
internally by the DNS solver.
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Figure 4-10: Momentum flux normalized by mean density 𝜌 measured for each 𝑧∗ and characteristic
velocity 𝑢rms measured at 𝑧∗ = −0.5 (see Table 4-1) across a range of Fr2

𝑇 (see figure 4-3a for color
legend). For the viscous term, we further multiply by Re𝑇 to bring it to a similar scale.

The appropriate choice for 𝑝0 makes the sum of momentum flux terms (i.e., stresses) zero:

𝜌 𝑤𝑤 + 𝜌′𝑤𝑤 + 𝑝𝑑 − 𝜏33 = 0 (4.22)

In figure 4-10 we plot (per unit mass) the mean-density component of Reynolds stress 𝑤𝑤,
the fluctuating-density component of Reynolds stress 𝜌′𝑤𝑤/𝜌, and the viscous stress −𝜏33/𝜌.
As shown in (4.22), pressure stress 𝑝𝑑/𝜌 cancels the sum of these other three stresses. We
see that plotting against 𝑧∗ and normalizing the stresses by 𝑢2

rms measured at the bottom of
the surface layer (𝑧∗ = −0.5) does a good job collapsing the results, especially for strong
FST. Beneath the surface layer (𝑧∗ < −0.5), there is no contribution of fluctuating-density
Reynolds stress or viscous stress. Within the surface layer (𝑧∗ ∈ [−0.5, 0.5]), viscous stress
is of order Re−1

𝑇 , meaning it is negligible in this DNS and certainty negligible at the larger
Re𝑇 typical of real-world FST. For strong FST, we see that 𝑤𝑤 slightly decreases in the lower
surface layer as vertical fluctuations are suppressed, then slightly increases in the upper
surface layer as vertical fluctuations are amplified, consistent with 𝜙 in figure 4-7c.

We now focus on the fluctuating-density component of Reynolds stress, 𝜌′𝑤𝑤. Within
the lower surface layer this term becomes slightly negative, then increases through the upper
surface layer. As with intermittency in section 4.4.1, we can split this term into separate
contributions from bubbles, droplets, and the free surface. Recalling (2.4), we can write
density fluctuations as

𝜌′ = Δ𝜌(𝑐 − 𝛾) , (4.23)

where Δ𝜌 = 𝜌𝑤 − 𝜌𝑎 is the difference in density between water and air. As in section 4.4.1,
we can split the color function into the contributions from each of the three phenomenon
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Figure 4-11: Components of 𝜌′𝑤𝑤 from (4.25), normalized by mean density 𝜌(𝑧∗) and characteristic
velocity 𝑢rms measured at 𝑧∗ = −0.5 (see Table 4-1) across a range of Fr2

𝑇 (see figure 4-3a for color
legend). Note the difference in magnitude of the horizontal axes.

(𝑐 = 𝑐0 + 𝑐𝐷 + 𝑐𝐵) and the same for the intermittency factor (𝛾 = 𝛾0 + 𝛾𝐷 + 𝛾𝐵). Through
(4.23), this allows us to split the density fluctuations (𝜌′ = 𝜌′0 + 𝜌′𝐷 + 𝜌′𝐵). The density
fluctuations caused by the free surface are

𝜌′0 ≡ Δ𝜌(𝑐0 − 𝛾0) , (4.24)

and similar equations for 𝜌′𝐷 and 𝜌′𝐵 describing fluctuations caused by droplets and bubbles
respectively. This allows us to decompose 𝜌′𝑤𝑤 into three terms,

𝜌′𝑤𝑤 = 𝜌′0𝑤𝑤 + 𝜌′𝐵𝑤𝑤 + 𝜌′𝐷𝑤𝑤 , (4.25)

each shown in figure 4-11. We see that, by at least two orders of magnitude, free-surface
effects (𝜌′0𝑤𝑤) dominate bubble or droplet effects. As expected, droplets only have a (very
small) effect above the mean free surface (𝑧∗ > 0). Bubbles on the other hand never have a
significant effect through 𝜌′𝐵𝑤𝑤, even for large Fr2

𝑇 where the volume fraction of bubbles is
non-negligible. To explain this result, we note that 𝜌′𝐵𝑤𝑤 can be interpreted as the correlation
between the presence of a bubble and large vertical velocities. Appendix D contains an
analysis of all the 𝜌′𝑤𝑤 terms interpreted as correlation coefficients. In summary, zero
correlation is what one would obtain if bubbles were treated as passive particles, showing
that bubbles in FST are primarily advected by the turbulence, with buoyancy having a smaller
contribution.
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4.5.3 Turbulent kinetic energy
We now examine the turbulent kinetic energy (TKE) equation. Taking the inner product of u
and (2.1) written in conservative form (again, neglecting surface tension),

𝜕

𝜕𝑡

(︂
1
2𝜌u · u

)︂
= −∇ ·

[︂
u

(︂
1
2𝜌u · u

)︂
+ u𝑝 − u · 𝝉

]︂
− 𝝉 : ∇u − g𝜌𝑤 . (4.26)

It is also useful to consider the mass conservation equation,

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌u) = 0 . (4.27)

Averaging (4.27) and noting that there is no flux at the bottom or top boundaries of the
domain, we obtain 𝜌𝑤 = 0. With this the gravity term cancels out when we average (4.26),
and we obtain

0 = − 𝜕
𝜕𝑧

(︂
1
2𝜌𝑤𝑢𝑖𝑢𝑖 + 𝑤𝑝 − 𝑢𝑖𝜏𝑖3

)︂
− 𝜌𝜀 . (4.28)

In this section, we will: compare the evolution of 𝑘̃ and 𝜀 between the simulations with the
free surface and single phase simulation to show, especially for strong FST, that free-surface
effects are restricted to within the surface layer; examine 𝑘̃ and 𝜀 within the surface layer;
and evaluate the three energy flux terms in (4.28). Predicting the flux of energy into the
surface layer (or equivalently, the energy dissipation within the surface layer) will form an
important part of the turbulence model discussed in section 4.6.

Extent of the free surface’s effect on turbulence

Recall our simulation setup generates turbulence (i.e., injects turbulent kinetic energy 𝑘̃) in a
region deep beneath the free surface, which then diffuses toward the surface while some is
dissipated by 𝜀. Because of this setup, turbulence levels vary with depth, even in the absence
of free-surface effects (Guo & Shen, 2009). To elucidate the effect of the free surface on 𝑘̃
and 𝜀, we first perform a new DNS without any free surface. This no free surface simulation
has the same setup as those described in §2.1, except the entire domain is filled with water.
We find the air gap of 𝜋 is sufficient such that the upper boundary has negligible effect on the
turbulence around 𝑧 = 0 (the location of the quiescent free surface in the other simulations).

Figure 4-12 compares 𝑘̃ and 𝜀 from the simulations with and this new the simulation
without a free surface. Turbulence values are normalized by their value at 𝑧 = −𝜋/2, the
point above which there is no forcing and the flow evolves naturally (see (4.8)). Focusing first
on figure 4-12a and 4-12c, in the absence of the free surface we see the expected exponential
decay with depth for both 𝑘̃ and 𝜀 (Guo & Shen, 2009). This is also true for simulations
with the free surface below a certain depth; however, at shallower depths both 𝑘̃ and 𝜀 depart
and are much larger than in the simulation without a free surface.

To quantify the amplification of 𝑘̃ and 𝜀 due to free-surface effects, in figure 4-12b and
4-12d we divide the value of 𝑘̃ and 𝜀 in the simulations with a free surface to the value at
the same 𝑧 in the simulation without a free surface. We then normalize depth by 𝛿𝑠 to plot
in terms of 𝑧∗. We see that, especially for strong FST, the amplification of 𝑘̃ and 𝜀 only
happens above the lower limit of the surface layer (𝑧∗ > −0.5). These results demonstrate
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Figure 4-12: (a & b) Turbulent kinetic energy 𝑘̃ and (c & d) dissipation rate 𝜀 across a range of Fr2
𝑇

(see figure 4-3a for color legend), compared to a simulation without a free surface (——).
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Figure 4-13: Turbulent kinetic energy 𝑘̃ and dissipation rate 𝜀, per unit volume and per unit mass
across a range of Fr2

𝑇 (see figure 4-3a for color legend).

that the free surface does not directly affect the turbulence beneath the surface layer, and that
𝑧∗ = −0.5 is an appropriate definition of the lower limit of the surface layer. Notably, this
suggests that beneath the surface layer standard turbulence closure models are applicable.

Turbulence within the surface layer

Unlike beneath the surface layer, the turbulence within the surface layer is directly affected
by free surface effects. Figure 4-12b and 4-12d show that 𝑘̃ and 𝜀 are significantly increased
relative to flow without a free surface. Figure 4-13 shows 𝑘̃ and 𝜀 normalized by the value
measured at the bottom of the surface layer (𝑧∗ = −0.5). For the turbulent kinetic energy per
unit mass 𝑘̃ , we see that there is relatively little variation within the surface layer, especially
for the lower surface layer (𝑧∗ ∈ [−0.5, 0]). In other words, throughout the surface layer, 𝑘̃
does not depart significantly from the value at the bottom of the surface layer (𝑧∗ = −0.5).
Furthermore, because 𝜌𝑎 ≪ 𝜌𝑤 , the small variation in the upper surface layer (𝑧∗ ∈ [0, 0.5])
is negligible when one considers the turbulent kinetic energy per unit volume, 𝜌𝑘̃ .

For the turbulent dissipation rate per unit mass 𝜀, the variations in the surface layer are
slightly larger than for 𝑘̃ , but still 𝜀 measured at the bottom of the surface layer does a good
job characterizing dissipation rates within the surface layer, especially the lower surface
layer (𝑧∗ ∈ [−0.5, 0]). Because 𝜌𝑎 ≪ 𝜌𝑤 , the majority of the absolute dissipation of energy
happens in the lower surface layer, and we see a reasonably strong collapse of 𝜌𝜀.

As a first approximation, one could model the dissipation rate per unit mass in the surface
layer as a constant equal to 𝜀 measured at 𝑧∗ = −0.5, in which case the rate at which energy
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Figure 4-14: Turbulent kinetic energy flux terms across a range of Fr2
𝑇 (see figure 4-3a for color

legend), normalized by water density 𝜌𝑤 and characteristic velocity 𝑢rms measured at 𝑧∗ = −0.5 (see
Table 4-1). For the viscous term, we further multiply by Re𝑇 to bring it to a similar scale.

is dissipated within the surface layer (per unit mean free-surface area) could be approximated

𝑊 ≈ 𝜀 𝛿𝑠
[︃
𝜌𝑤 − (𝜌𝑤 − 𝜌𝑎)

∫ 0.5

−0.5
𝛾 d𝑧∗

]︃
. (4.29)

Using a distribution of 𝛾 that is symmetric about 𝜂̄ (this includes both (4.5) and (4.15)) and
noting 𝜌𝑎 ≪ 𝜌𝑤, one obtains

𝑊/𝜌𝑤 ≈ 1
2 𝜀 𝛿𝑠 . (4.30)

This first approximation turns out to be very close to the fit we obtain later in section 4.6
based on measuring the flux of energy into the surface layer.

Energy flux into the surface layer

We now investigate the three energy flux terms in (4.28), shown in figure 4-14. As with the
momentum flux terms, we plot against 𝑧∗ and normalize the stresses by 𝑢rms measured at the
bottom of the surface layer (𝑧∗ = −0.5). First, we note that, as expected, the viscous diffusion
term 𝑢𝑖𝜏𝑖3 is of order Re−1

𝑇 , meaning it is negligible in this DNS and certainty negligible at
the larger Re𝑇 typical of real-world FST. For the remaining terms, we see turbulent diffusion
𝜌𝑤𝑢𝑖𝑢𝑖 moves energy upward into the surface layer, and pressure diffusion 𝑤𝑝 partially
counteracts this, moving some energy out of the surface layer. Of note, despite scaling by 𝑧∗
and 𝑢rms, we still see Fr2

𝑇 dependence in these energy flux terms.
While we have shown that the turbulence beneath the surface layer does not directly feel

the free surface, the increased energy dissipation with the surface layer is still important to
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Figure 4-15: Work done on the surface layer by turbulence beneath𝑊 as a function of Fr2
𝑇 , including

(——) the linear fit to (4.32) (𝑅2 = 0.641).

the overall energy budget of the flow. Thus, the energy flux into the surface layer (i.e., the
net work done on the surface layer by the turbulence beneath) is an important quantity to
model. Ignoring the negligible viscous term, this net work is given by the sum of turbulent
and pressure diffusion measured at the bottom of the surface layer,

𝑊 =
[︁ 1

2𝜌𝑤𝑢𝑖𝑢𝑖 + 𝑤𝑝
]︁
𝑧∗=−0.5 . (4.31)

In figure 4-15 we show that (nondimensionalized by 𝜌𝑤 and 𝑢rms measured at 𝑧∗ = −0.5),
this net work scales like Fr2

𝑇 . Linear regression gives

𝑊/(𝜌𝑤𝑢3
rms) = 𝐶𝑊 Fr2

𝑇 , (4.32)

where the 95% confidence interval is 𝐶𝑊 = 4.6 ± 0.8. Dimensionalizing (4.32), we see
how the work done on the surface layer depends on gravity and the turbulence (𝜀 and 𝑢rms)
measured at the bottom of the surface layer,

𝑊/𝜌𝑤 = 𝐶𝑊 𝑢
2
rms𝜀 g−1 . (4.33)

4.6 A surface layer model for RANS
We have shown that, particularly for strong FST, there is a clear difference between the
turbulence beneath the surface layer and the turbulence within the surface layer, with
𝑧∗ = −0.5 separating the two. Because the turbulence beneath the surface layer is not
directly affected by the free surface, standard turbulence closure models, such as RANS,
will likely still be appropriate. What is needed then is a model for the surface layer that acts
like a boundary condition for RANS, applied at 𝑧 = 𝜂̄ − 0.5𝛿𝑠 from the mean free surface,
analogous to wall models for boundary layers.

So far, we have obtained the surface layer thickness 𝛿𝑠 a posteriori using measurements
of 𝛾, as described by (4.6). For a predictive model appropriate to RANS, we need 𝛿𝑠 based on
the turbulence levels 𝜀 and 𝑢rms =

√︁
2𝑘̃/3. Figure 4-16 shows the scaling of 𝛿𝑠, normalized
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Figure 4-16: Surface layer thickness 𝛿𝑠, normalized by the characteristic length scale 𝐿𝑇 = 𝑢3
rms/𝜀

measured at 𝑧∗ = −0.5, as a function of Fr2
𝑇 , including (——) the linear fit to (4.34) (𝑅2 = 0.909).

by the characteristic turbulence length scale 𝐿𝑇 = 𝑢3
rms/𝜀, as a function of Fr2

𝑇 . We see a
strong linear relationship

𝛿𝑠/𝐿𝑇 = 𝐶𝛿 Fr2
𝑇 , (4.34)

where the 95% confidence interval is 𝐶𝛿 = 11.1 ± 1.1. Dimensionalizing,

𝛿𝑠 = 𝐶𝛿 𝑢
2
rms g−1 . (4.35)

This is the scaling one would expect from a simple wave argument: that energy is roughly
evenly distributed between gravitational potential energy (∝ 𝜌𝑤g𝛿𝑠) and kinetic energy
(∝ 𝜌𝑤𝑢2

rms). We note that the depth that 𝑢rms is measured at (𝑧∗ = −0.5) is a function of 𝛿𝑠,
so (4.35) is not strictly explicit; however, because 𝑢rms does not change quickly with depth
(see 𝑘̃ in figure 4-13), solving (4.35) should not be a challenge.

For a 𝑘-𝜀 RANS model, we need a boundary condition which describes the flux of
turbulent kinetic energy across the surface layer boundary at 𝑧∗ = −0.5. Brocchini (2002)
derive the form of this boundary condition for general FST, and here we study a subset where
there is no turbulent energy production in the surface layer and energy flux is driven by only
dissipation within the surface layer. This flux of 𝑘̃ into the surface layer (per unit area) is
given by (4.33). Using (4.35), we can rewrite (4.33) as

𝑊/𝜌𝑤 = (𝐶𝑊/𝐶𝛿) 𝜀 𝛿𝑠 . (4.36)

While Brocchini (2002) consider 𝑘 = u · u/2 rather than 𝑘̃ = 𝜌u · u/2𝜌, beneath the surface
layer 𝛾 ≈ 1 and the difference is negligible. Therefore, this 𝐶𝑊/𝐶𝛿 is equivalent to 𝐶diss in
the model derived by Brocchini (2002). We have that 𝐶𝑊/𝐶𝛿 = 0.41 ≈ 1

2 , meaning that
(4.36) is consistent with the first approximation (4.30) developed in section 4.5.3 based on
the simplifying assumption of constant 𝜀 throughout the surface layer.
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4.7 Conclusion
For sufficiently large Fr2

𝑇 , turbulence is strong enough to overcome the restoring force of
gravity and break apart the free surface, leading to air entrainment. Our interest in this
chapter is characterizing the turbulence in the resulting surface layer, where air and water a
highly mixed. The turbulence in this region drives bubble evolution mechanisms, but it is
hard to predict using turbulence modeling, like RANS.

We develop a definition of the surface layer thickness 𝛿𝑠 based on the derivative of
intermittency d𝛾/d𝑧 at the mean free-surface height 𝑧 = 𝜂̄. This removes dependence of 𝛿𝑠
on the tail-behavior of 𝛾, which can be affected by the (Fr2

𝑇 -dependent) bubble void fraction
deep beneath the 𝜂̄ and makes no assumptions about the distribution of 𝛾. It turns out that
our more robust definition of the surface layer is appropriate to characterize the relevant
properties of the near-surface turbulence. In particular, scaling depth by 𝑧∗ = (𝑧 − 𝜂̄)/𝛿𝑠
collapses results across broad ranges of Fr2

𝑇 , and there is a clear difference in behavior
between within the surface layer and beneath the surface layer, separated by 𝑧∗ = −0.5.

We show the collapse with 𝑧∗ for intermittency, turbulence isotropy, turbulent momentum
flux, and turbulent energy flux. For intermittency, we show that even at large Fr2

𝑇 the
surface layer intermittency is driven by the movement of a mostly intact free surface (rather
than bubbles or droplets), and that the distribution is logistic rather than Gaussian as often
assumed (Brocchini & Peregrine, 2001b). For isotropy, we show a clear transition to nearly
isotropic turbulence in the surface layer around Fr2

𝑇 ≈ 0.1. This defines the range (Fr2
𝑇 > 0.1)

of the strong FST regime (Yu et al., 2019). Our measurements of turbulence highlight that,
particularly for strong FST, the direct effects of the free surface are constrained to the surface
layer (𝑧∗ ∈ [−0.5, 0.5]), and that the turbulence within the surface layer follows a universal
behavior characterized by 𝛿𝑠 as well as 𝜀 and 𝑢rms measured at the bottom of the surface
layer (𝑧∗ = −0.5).

In section 4.6 we discuss that, because the direct effects of the free surface are constrained
to the surface layer, RANS turbulence modeling could be applied without modification
beneath the surface layer, with a boundary condition at the bottom of the surface layer
capturing the indirect effects though energy flux. This is similar to the thin-layer model
theorized by Brocchini (2002). We determine the scaling of 𝛿𝑠 and the energy flux into the
surface layer,𝑊 , with Fr2

𝑇 , and linear regression to DNS data provides the scaling coefficients.
These are the two values needed to implement a surface layer boundary condition in 𝑘-𝜀
RANS.
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Chapter 5

Bubble Fragmentation in
Homogeneous Isotropic Turbulence

In this chapter we focus on bubble fragmentation, the 𝑆 𝑓 (𝑎) term in the population balance
equation (1.2). We study fragmentation in homogeneous isotropic turbulence (HIT), which,
as shown in Chapter 4, is a good approximation of the turbulence beneath the free surface. For
strong FST (Fr2

𝑇 > 0.1), this is true even in close proximity to the free surface. Fragmentation
is important to understanding the bubble population beneath entraining free surfaces because,
as discussed in section 1.3, a fragmentation cascade is the basis for the 𝑁 (𝑎 > 𝑎𝐻) ∝ 𝑎−10/3

bubble population predicted by Garrett et al. (2000). By elucidating three fundamental
timescales of fragmentation, we validate some of the modeling assumptions used to obtain
−10/3 and determine how long it takes for a bubble population to reach this equilibrium
solution.

Key results from this chapter are summarized in “Fundamental timescales of bubble
fragmentation in homogeneous isotropic turbulence” by Gaylo, Hendrickson & Yue (2023).

5.1 Introduction
For general turbulent flows, there is the large length scale of the flow driven by the geometry
and the way in which turbulence is generated, and the small Kolmogorov scale 𝜂𝑇 where
turbulent kinetic energy is dissipated to heat. As shown in (2.18), the ratio between these
two scales with ∼ Re3/4. For many different turbulent flows with Re ≫ 1, the turbulence
between these two scales (the Kolmogorov inertial sub-range) exhibits universal behavior
like that of simple HIT. Hence, fragmentation of bubbles within the Kolmogorov inertial
sub-range of HIT is often studied due to its wide applicability, including to free-surface
turbulence (Yu et al. 2019; Gaylo & Yue 2025; see also Chapter 4).

In HIT, fragmentation is primarily governed by the disturbing effect of turbulent
fluctuations and the restoring effect of surface tension. The ratio between the two is given by
the bubble Weber number introduced in section 1.3,

We𝐵 =
2𝜀2/3(2𝑎)5/3
(𝜎/𝜌𝑤) , (1.10)
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where 𝜀 is the turbulent dissipation rate, 𝑎 is the parent bubble’s effective radius, and 𝜎
is the surface-tension coefficient. The Hinze scale is defined as the Weber number We𝐻
below which surface tension largely prevents fragmentation (Hinze, 1955), corresponding to
a bubble radius

𝑎𝐻 = 2−8/5 We3/5
𝐻 (𝜎/𝜌𝑤)3/5 𝜀−2/5 . (5.1)

Thus, our focus here is moderate (We𝐵 ≳ We𝐻) to large (We𝐵 ≫ We𝐻) Weber numbers
where fragmentation is present. Especially for We𝐵 ≫ We𝐻 , we expect the daughter bubbles
of a fragmentation event to fragment themselves, leading to a fragmentation cascade. An
assumption made by Garrett et al. (2000) to obtain this fragmentation cascade is that
fragmentation is a local process, meaning it is uncommon for fragmentation to form daughter
bubbles much smaller than the parent. Locality in fragmentation cascades is confirmed by
Chan et al. (2021b,c).

Our interest is the statistical modeling of fragmentation for the population balance
equations (PBE) (1.2). In principle, the necessary statistics can be derived from a (more)
complete mechanistic description of fragmentation, which is a subject of active investigation
(e.g., Liao & Lucas, 2009; Qi et al., 2022; Rivière et al., 2021, 2022). In addition to the
challenge of disparate mechanistic descriptions, another challenge is that these often describe
the behavior of a bubble as dependent on its history (for example, the two-step process
presented by Rivière et al. (2022)). Contrarily, the PBE assumes that the statistical behavior
of a bubble is independent of its history, i.e., no hysteresis. The present work complements
mechanistic studies by focusing on the fundamental statistics of turbulent fragmentation,
quantified through their characteristic timescales. While individual physical mechanisms
can also be characterized by timescales, such as the timescale for a sufficiently strong eddy
to fragment a bubble (Qi et al., 2022) or the timescale for capillary-driven production of
sub-Hinze bubbles (Rivière et al., 2021, 2022), our focus is on the timescales that characterize
the fundamental statistics of fragmentation. Understanding these timescales will directly
support the statistical modeling of bubble size distributions through PBE. Additionally, the
understanding provided by these statistical timescales will provide robust ways to compare
disparate mechanistic models of fragmentation.

In this work, we elucidate and quantify three fundamental timescales of fragmentation
for moderate- to large-We HIT. In order of magnitude from small to large, these are: the
bubble relaxation time 𝜏𝑟 which characterizes the time from when a bubble is formed to
when its subsequent dynamics (e.g., the rate of fragmentation) become statistically stationary,
the (well-established) bubble lifetime 𝜏ℓ which characterizes the time from when a bubble
is formed to when it undergoes fragmentation (Martínez-Bazán et al., 1999a), and the
convergence time 𝜏𝑐 which characterizes the time needed for the air to go from the scale
of the largest bubble, radius 𝑎𝑚𝑎𝑥 , to the Hinze scale, 𝑎𝐻 . In section 5.2 we examine how
these timescales relate to statistical modeling of bubble size distributions through PBE. In
previous work, 𝜏𝑐 could not be described for realistic fragmentation statistics (Deike et al.,
2016; Qi et al., 2020). In section 5.3 we develop a Lagrangian mathematical description
which provides the speed at which volume moves through the fragmentation cascade. This
volume-propagation speed allows us to derive 𝜏𝑐 for realistic fragmentation statistics at large
We. We prove that, unlike typical fragmentation statistics, the volume-propagation speed
can be obtained independent of the time interval used for measurement. Using DNS of
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moderate- to large-We bubble fragmentation in HIT (described in section 5.4), in section 5.5
we use ELA to measure fragmentation to quantify the three fundamental timescales. In
section 5.6 we discuss the new insights provided by the quantification of these timescales:
𝜏𝑟 shows hysteresis can be neglected in PBE, and 𝜏𝑐 provides a new constraint on large-We
fragmentation models.

5.2 Three fundamental timescales of fragmentation
To define characteristic timescales of fragmentation, we start by reviewing the statistics
typically used to describe fragmentation. As introduced in section 1.2, the fragmentation
source term in the PBE can be split into a destruction and a creation term,

𝑆 𝑓 (𝑎) ≡ 𝑆+𝑓 (𝑎) − 𝑆−𝑓 (𝑎) , (1.4)

where the destruction term (assuming a Poisson process) is

𝑆−𝑓 (𝑎) = 𝛺(𝑎)𝑁 (𝑎) . (1.5)

This introduces the first fragmentation statistic 𝛺(𝑎), the fragmentation rate (dimensions
[1/𝑇]). The creation term 𝑆+𝑓 (𝑎) describes when any bubble of radius 𝑎′ > 𝑎 fragments to
form a bubble of radius 𝑎. This can be written as an integral,

𝑆+𝑓 (𝑎) =
∫ ∞

𝑎
𝑚̄(𝑎′)𝛽(𝑎; 𝑎′)𝑆−𝑓 (𝑎′) d𝑎′ , (5.2)

where we have the other two fragmentation statistics: 𝑚̄(𝑎′) is the average number of
daughter bubbles created by fragmentation of a parent of radius 𝑎′; and 𝛽(𝑎; 𝑎′) is the
daughter-size distribution, expressed as a probability distribution function of daughter radius
𝑎 for a given parent radius 𝑎′. Fragmentation cannot create or destroy air, only move it
between bubble sizes. Expressing this volume conservation requirement is easier if we write
the daughter-size distribution in terms of a volume ratio 𝑣∗ = (𝑎/𝑎′)3, giving a daughter-size
distribution 𝑓 ∗𝑉 related to 𝛽 by

𝑎′𝛽(𝑎; 𝑎′) = 3(𝑣∗)2/3 𝑓 ∗𝑉 (𝑣∗; 𝑎′) . (5.3)

Volume conservation requires the distribution satisfy (Martínez-Bazán et al., 2010)

𝑚̄(𝑎′)
∫ 1

0
𝑣∗ 𝑓 ∗𝑉 (𝑣∗; 𝑎′) d𝑣∗ = 1 . (5.4)

While there is great variety in models for 𝑚̄(𝑎′) and 𝛽(𝑎, 𝑎′) (Liao & Lucas, 2009),
models for 𝛺(𝑎) generally follow

𝛺(𝑎) = 𝐶𝛺 (We𝐵)𝜀1/3𝑎−2/3 , (5.5)

where𝐶𝛺 (We𝐵) approaches a constant value𝐶𝛺,∞ as We→∞. Dimensional analysis shows
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𝐶𝛺 could also depend on Reynolds number and an additional parameter, such as the ratio
between parent-bubble radius and the Kolmogorov scale, 𝑎/𝜂𝑇 , implied by Qi et al. (2022);
however, the power-law scaling in (5.5) is robust at large We𝐵 (Martínez-Bazán et al., 2010).
Assuming We𝐵 ∼ ∞ to neglect surface tension, this scaling can be arrived at mechanistically
by dividing the characteristic velocity of the turbulent fluctuations on the scale of a bubble
(∼ 𝜀1/3𝑎1/3) by the characteristic length a bubble must deform to fragment (∼ 2𝑎) (Garrett
et al., 2000). A model for moderate to large We based on the assumption that the rate of
fragmentation is proportional to the difference between the deforming force of turbulent
fluctuations and the restoring force of surface tension is

𝐶𝛺 (We𝐵) = 𝐶𝛺,∞
√︁

1 −We𝐻/We𝐵 , (5.6)

with 𝐶𝛺,∞ ≈ 0.42 from experiments (Martínez-Bazán et al., 1999a; Martínez-Bazán et al.,
2010).

5.2.1 Bubble lifetime, 𝜏ℓ
The first fundamental timescale is the expected lifetime of a bubble, 𝜏ℓ, To define this, we
start by defining 𝑝frag(𝑎;𝑇) to be the probability of fragmentation over some measurement
interval 𝑇 , i.e., the probability a bubble of radius 𝑎 present at time 𝑡 will fragment before
the next measurement at time 𝑡 + 𝑇 . For convince, let 𝑡 = 0 be the time a bubble is created.
The probability distribution function for the bubble lifetime ℓ is 𝜕𝑝frag/𝜕𝑇 and the expected
lifetime 𝜏ℓ = E[ℓ] can be calculated. If we assume, as is done in PBE, that the fragmentation
rate of a bubble is independent of the time since its formation, then

𝑝frag(𝑎;𝑇) = 1 − exp [−𝑇𝛺(𝑎)] , (5.7)

and the expected lifetime is 𝜏ℓ = 1/𝛺(𝑎).

5.2.2 Relaxation time, 𝜏𝑟
For (5.7) (and by extension (1.5) and the PBE (1.2) in general), we assume that the statistics
describing fragmentation are independent of bubble age, which we will refer to as the
no-hysteresis assumption. This no-hysteresis assumption means that the (statistical) behavior
of a bubble after it is created by fragmentation should be indistinguishable from a bubble
that has existed for a much longer time. For PBE modeling, it is desirable to assume the
effect of hysteresis is negligible; however, at least over short timescales, this seems unlikely
physically, as a young bubble must be significantly deformed from equilibrium. Regardless
of the mechanistic explanation for fragmentation (either the result of accumulation of surface
oscillations (Risso & Fabre, 1998) or a single-sufficiently strong eddy (Martínez-Bazán et al.,
1999a)), we expect a young bubble to be more likely to fragment, violating no-hysteresis.
Although the physical mechanism for hysteresis is unclear, we posit that there exists a
timescale 𝜏𝑟 below which it is relevant, and above which it is negligible.

To define 𝜏𝑟 more formally, we start by investigating how 𝛺(𝑎) can be related to
measurable quantities. As infinitely small temporal resolution is unobtainable, a finite
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measurement interval 𝑇 is inherent in the measurement of fragmentation events, in both
experiments and simulations (Vejražka et al., 2018). The validity of the no-hysteresis
assumption depends on the timescale 𝑇 one uses to define fragmentation events (Solsvik
et al., 2016), as some 𝑇 is inherent to any measurement, we will allow for measured
fragmentation statistics to depend on 𝑇 . We rearrange (5.7) to define the 𝑇-dependent
fragmentation rate

𝛺(𝑎;𝑇) ≡ − ln
[︁
1 − 𝑝frag(𝑎;𝑇)]︁ /𝑇 . (5.8)

For large We where daughter bubbles will eventually fragment, it is clear that 𝑚̄ must also
depend on 𝑇 , and therefore, by (5.4), so must 𝑓 ∗𝑉 . Thus, let 𝑚̄(𝑎′;𝑇) be the expected number
of daughters present at 𝑡 +𝑇 if the bubble fragments and 𝑓 ∗𝑉 (𝑣∗; 𝑎′, 𝑇) be the size distribution
of these daughters. In the absence of hysteresis 𝛺(𝑎;𝑇) would be independent of 𝑇 , but the
physical dependence of these statistics on 𝑇 makes them difficult to relate to the statistics
describing fragmentation in the PBE (Solsvik et al., 2016). We posit that there exists a
timescale 𝜏𝑟 such that 𝛺(𝑎;𝑇 ≫ 𝜏𝑟) = 𝛺(𝑎) is independent of 𝑇 . It follows that 𝜏ℓ ≫ 𝜏𝑟 is
required for the no-hysteresis assumption to be valid in PBE.

5.2.3 Convergence time, 𝜏𝑐
As presented in Chapter 1, 𝑁 (𝑎) ∝ 𝑎−10/3 is the equilibrium solution (𝜕𝑁/𝜕𝑡 = 0) to the
PBE with only the fragmentation source term (Garrett et al., 2000), or as more recently
shown fragmentation with cut-off power-law entrainment, where the size distribution of
the bubbles injected by entrainment follows a power law 𝐼 (𝑎) ∝ 𝑎𝛾 where 𝛾 > −4 (Gaylo
et al., 2021). The time, 𝜏𝑐, it takes to reach these equilibrium solutions is of interest: if 𝜏𝑐
is much less than the timescale over which the flow is transient, we expect an equilibrium
fragmentation cascade (generally 𝑁 (𝑎) ∝ 𝑎−10/3) to be obtained. Gaylo et al. (2021) provide
an expression for 𝜏𝑐 which allows for arbitrary 𝑓 ∗𝑉 and 𝑚̄, but its derivation is specific to
power-law entrainment. For general fragmentation cascades, 𝜏𝑐 is characterized by the
time it takes for the volume of the largest bubble (radius 𝑎𝑚𝑎𝑥) to reach the Hinze scale 𝑎𝐻
(Deike et al., 2016; Qi et al., 2020). This characterization is useful because it allows 𝜏𝑐
to be measured independent of the evolution of 𝑁 (𝑎). Additionally, being directly related
to fragmentation, it could provide a constraint on the fragmentation statistics in PBE (Qi
et al., 2020). However, current derivations of 𝜏𝑐 from fragmentation statistics assume that
bubbles break into identically sized daughters, ignoring the effect of 𝑓 ∗𝑉 . Although Monte
Carlo simulation can be used to determine what 𝜏𝑐 is predicted by given fragmentation
statistics (Qi et al., 2020), the lack of a general analytic expression relating 𝜏𝑐 to realistic
fragmentation statistics precludes the reverse; it is unclear how a given value of 𝜏𝑐 constrains
fragmentation statistics.

5.3 Describing 𝜏𝑐 using a Lagrangian description of frag-
mentation cascades

In this section, we derive a general analytic expression that relates 𝜏𝑐 to realistic fragmentation
statistics. Previous derivations of 𝜏𝑐 assume identical fragmentation and that the life of a
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bubble is exactly (rather than on the average) equal to 𝜏ℓ so that the cascade can be treated
as a series of discrete deterministic fragmentation events (Deike et al., 2016). While this
approach provides the general physical scaling of 𝜏𝑐, it is unable to directly relate 𝜏𝑐 to realistic
fragmentation statistics. In this section we use a Lagrangian air particle-based mathematical
description of the speed at which volume moves through fragmentation cascades to derive
𝜏𝑐. We note that this is a “speed” in the abstract sense as it measures how quickly air moves
from large bubbles to small bubbles through the fragmentation cascade rather than through
physical space. However, this description is useful as, through this speed, 𝜏𝑐 can be related to
realistic fragmentation statistics and this speed is also directly accessible from volume-based
bubble-tracking (Gaylo et al. 2022; see also Chapter 3). Although 𝑇-independence is obvious
when 𝜏𝑐 is obtained through the evolution of 𝑁 (𝑎), it is less clear when 𝜏𝑐 is obtained through
fragmentation statistics, which generally depend on 𝑇 . We show that our approach allows
fragmentation statistics-based measurement of 𝜏𝑐 independent of 𝑇 .

Throughout this section, we consider large We𝐵 ≫ We𝐻 so that we can assume that
fragmentation statistics are scale-invariant and simplify (5.6) to a Heaviside step function:

𝐶𝛺 (We𝐵) = 𝐶𝛺,∞H (1 −We𝐻/We𝐵) . (5.9)

In the following derivation, we also assume no-hysteresis, limiting applicability to timescales
much larger than 𝜏𝑟 .

5.3.1 Lagrangian-based mathematical description of fragmentation
cascades

Previous work on the movement of volume in fragmentation cascades applies Eulerian
descriptions, focusing on volume flux. To find the equilibrium between entrainment and
fragmentation, Gaylo et al. (2021) balance the flux of volume in and out of the set of bubbles
of a given range of sizes. To evaluate locality, Chan et al. (2021b) study the flux of volume
from bubbles larger than a given size to those smaller. Eulerian descriptions are useful
to model the volume flow in and out of specified bubble sizes, but to derive 𝜏𝑐 we need
to understand how any specific air volume flows through the entire cascade. For this, a
Lagrangian description is more direct.

Consider how a single Lagrangian particle of air 𝑝 moves through a fragmentation
cascade, illustrated in figure 5-1. We define the function 𝑎𝑝 (𝑡) to be the radius of the bubble
that contains the particle of air 𝑝 at time 𝑡. We note that, because one bubble breaks up into
two instantaneously, 𝑎𝑝 (𝑡) is a step function that does not have a well-defined derivative.
Still, we can use 𝑎𝑝 (𝑡) to write a simple expression for expression for 𝜏𝑐: Defining time for a
particle such that 𝑎𝑝 (𝑡 = 0) = 𝑎𝑚𝑎𝑥 , our interest is the expected time for the particle to reach
the Hinze scale,

𝜏𝑐 ≡ E
{︁
min

{︁
𝑡 : 𝑎𝑝 (𝑡) ≤ 𝑎𝐻

}︁}︁
. (5.10)

The expected value here refers to an ensemble average over an arbitrarily large set of particles
𝑝.

Before addressing (5.10) directly, we need to develop a relationship between the ensemble
average behavior of these particles and the previous bubble-based statistical description of
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Figure 5-1: (a) Schematic of the Lagrangian description showing the path of a Lagrangian air
particle 𝑝 through a sequence of fragmentations from large to small radii, 𝑎0, 𝑎1, . . . 𝑎𝑛, of the bubble
containing 𝑝; and (b) the corresponding function 𝑎𝑝 (𝑡) describing the evolution of this bubble radius.
Describing the radius of the bubble containing 𝑝 as a function of time allows a propagation speed of
𝑝 through the cascade to be defined.

fragmentation. This is easier in terms of bubble volume rather than radius. Incorporating
the measurement interval 𝑇 , for a given particle 𝑝 we define the volume ratio between the
bubble containing 𝑝 at time 𝑡 and the bubble containing 𝑝 at time 𝑡 + 𝑇 :

𝑣𝑅 (𝑡;𝑇) ≡
[︁
𝑎𝑝 (𝑡 + 𝑇)/𝑎𝑝 (𝑡)

]︁3 . (5.11)

If the bubble containing 𝑝 at time 𝑡 does not fragment over the measurement interval 𝑇 , then
𝑣𝑅 = 1. Trivially, any moment 𝑛 of the distribution of 𝑣𝑅 given no fragmentation is

E
{︁[𝑣𝑅 (𝑇∗)]𝑛 |︁|︁ no frag

}︁
= 1 . (5.12)

We now consider the case where the bubble containing 𝑝 at time 𝑡 fragments, in which
case 𝑣𝑅 depends on the size of the daughter bubble that 𝑝 ends up in. It is important to note
that the probability 𝑝 ends up in a given daughter is equivalent to 𝑣∗, the ratio of the volume
of the daughter to that of the parent. For example, if the bubble containing 𝑝 broke up into
two dissimilar daughter bubbles, the larger bubble three times the volume of the smaller
bubble (𝑣∗ = 3/4 and 𝑣∗ = 1/4 respectively), 𝑝 would have a 3/4 probability of ending up
in the larger bubble and a 1/4 probability of ending up in the smaller bubble. With this
subtlety in mind, the probability distribution function for 𝑣𝑅 given that fragmentation occurs,
𝑓𝑉𝑅 | frag, is related to the previous fragmentation statistics through

𝑓𝑉𝑅 | frag(𝑣𝑅; 𝑡, 𝑇) = 𝑚̄(𝑎𝑝 (𝑡);𝑇) 𝑣𝑅 𝑓 ∗𝑉 (𝑣𝑅; 𝑎𝑝 (𝑡), 𝑇) . (5.13)

We assume these statistics are scale invariant and introduce the non-dimensional parameter
𝑇∗ = 𝑇𝜀1/3𝑎𝑝 (𝑡)−2/3. This gives

𝑓𝑉𝑅 | frag(𝑣𝑅;𝑇∗) = 𝑚̄(𝑇∗) 𝑣𝑅 𝑓 ∗𝑉 (𝑣𝑅;𝑇∗) , (5.14)
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and any moment 𝑛 of the distribution is given by

E
{︁[𝑣𝑅 (𝑇∗)]𝑛 |︁|︁ frag

}︁
= 𝑚̄(𝑇∗)

∫ 1

0
𝑣∗𝑛+1 𝑓 ∗𝑉 (𝑣∗;𝑇∗) d𝑣∗ . (5.15)

To find the total distribution of 𝑣𝑅, we combine (5.12) and (5.15) using the law of total
probability,

E
{︁[𝑣𝑅 (𝑇∗)]𝑛}︁ = 𝑝frag E

{︁[𝑣𝑅 (𝑇∗)]𝑛 |︁|︁ frag
}︁ + (︁

1 − 𝑝frag
)︁

. (5.16)

Rearranging a little,

1 − E {︁[𝑣𝑅 (𝑇∗)]𝑛}︁ = 𝑝frag
(︁
1 − E {︁[𝑣𝑅 (𝑇∗)]𝑛 |︁|︁ frag

}︁)︁
. (5.17)

Assuming no hysteresis, we use (5.7) to describe 𝑝frag. Applying (5.9), the simplified model
of 𝐶𝛺 (We𝐵), and writing in terms of 𝑇∗ = 𝑇𝜀1/3𝑎𝑝 (𝑡)−2/3, we have

𝑝frag(𝑇∗) = 1 − exp[−𝐶𝛺,∞ 𝑇∗] (5.18)

for within the fragmentation cascade (𝑎𝑝 > 𝑎𝐻). Finally, we can relate the distribution of 𝑣𝑅
to the classical fragmentation statistics,

1 − E {︁[𝑣𝑅 (𝑇∗)]𝑛}︁ =
(︁
1 − exp[−𝐶𝛺,∞ 𝑇∗]

)︁ [︃
1 − 𝑚̄(𝑇∗)

∫ 1

0
𝑣∗𝑛+1 𝑓 ∗𝑉 (𝑣∗;𝑇∗) d𝑣∗

]︃
. (5.19)

5.3.2 Defining the volume-propagation speed in a fragmentation
cascade

To obtain 𝜏𝑐, we derive a metric that measures the speed at which Lagrangian air particles
move through fragmentation cascades. To derive a speed, we must first define the “location,”
𝑥(𝑡), of a Lagrangian air particle 𝑝 within the cascade. In this case location refers to some
abstract scalar bubble-size metric within the cascade rather than a physical spatial coordinate.
This means we have great freedom in how we map 𝑎𝑝 (𝑡) to location 𝑥(𝑡). We choose a
mapping such that the average of the associated speed 𝑠(𝑡) ≡ 𝑥̇(𝑡) is constant for 𝑎𝑝 (𝑡) > 𝑎𝐻 .
A constant average speed is necessary for many of the properties that will follow and, as a
result of the scaling in (5.5), is achieved only by 𝑥(𝑡) ∝ 𝑎𝑝 (𝑡)2/3. We choose

𝑥(𝑡) ≡ −𝜀−1/3𝑎𝑝 (𝑡)2/3 , (5.20)

which has dimensions of time, so that, in addition to being constant, the time-derivative of
𝑥(𝑡),

𝑠(𝑡) = −2
3
𝜀−1/3𝑎𝑝 (𝑡)−1/3 d

d𝑡
𝑎𝑝 (𝑡) , (5.21)

is also positive and non-dimensional.
Because 𝑎𝑝 (𝑡) is a step function, the derivative in (5.21) is ill defined. However, we can
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take the time-average of 𝑠(𝑡) over a measurement interval 𝑇 ,

⟨𝑠(𝑡)⟩𝑇 ≡ 1
𝑇

∫ 𝑡+𝑇

𝑡
𝑠(𝑡′) d𝑡′ . (5.22)

This gives

⟨𝑠(𝑡)⟩𝑇 =
𝑥(𝑡 + 𝑇) − 𝑥(𝑡)

𝑇
=
𝜀−1/3𝑎𝑝 (𝑡)2/3

𝑇

(︂
1 − [𝑣𝑅 (𝑡;𝑇)]2/9

)︂
, (5.23)

where (5.11) defines the volume ratio 𝑣𝑅 (𝑡;𝑇). As we have assumed scale-invariance, we
can then introduce non-dimensional time 𝑇∗ = 𝑇𝜀1/3𝑎𝑝 (𝑡)−2/3 to obtain

⟨𝑠(𝑡)⟩𝑇∗ = 1 − [𝑣𝑅 (𝑇∗)]2/9
𝑇∗

. (5.24)

This equation gives the time-averaged propagation speed for a single particle.
Next, we perform an ensemble average to get

E {⟨𝑠(𝑡)⟩𝑇∗} =
1 − E

{︂
[𝑣𝑅 (𝑇∗)]2/9

}︂
𝑇∗

, (5.25)

the expected time-averaged speed for an ensemble of (independent) Lagrangian air particles.
Using (5.19) with 𝑛 = 2/9, we obtain

E {⟨𝑠(𝑡)⟩𝑇∗} = 𝐶𝛺,∞
1 − exp[−𝐶𝛺,∞ 𝑇∗]

𝐶𝛺,∞ 𝑇∗

[︃
1 − 𝑚̄(𝑇∗)

∫ 1

0
𝑣∗11/9 𝑓 ∗𝑉 (𝑣∗;𝑇∗) d𝑣∗

]︃
. (5.26)

The limit 𝑇∗ → 0 gives the expected instantaneous speed,

𝑠̄ ≡ lim
𝑇∗→0

E {⟨𝑠(𝑡)⟩𝑇∗} = 𝐶𝛺,∞
[︃
1 − 𝑚̄

∫ 1

0
𝑣∗11/9 𝑓 ∗𝑉 (𝑣∗) d𝑣∗

]︃
, (5.27)

where 𝑚̄ and 𝑓 ∗𝑉 (𝑣∗) describe the fragmentation statistics for 𝑇∗ → 0 and are equivalent to
those in (5.2).

Hereafter, we refer to 𝑠̄ as the volume-propagation speed of a fragmentation cascade.
Although the size locations of individual Lagrangian air particles in the cascade follow step
functions, by commuting time averaging and ensemble averaging, we are able to obtain
an average instantaneous speed for particles in the cascade. This speed 𝑠̄ can be related to
fragmentation statistics measured over finite intervals 𝑇 with (5.26), or the instantaneous
statistics used by PBE with (5.27). The relationship between the two is explored in §5.3.4.
In §5.3.3 we use 𝑠̄ to provide 𝜏𝑐.

5.3.3 Describing convergence time, 𝜏𝑐
As intended, our choice of the definition of location within the cascade, 𝑥(𝑡), makes 𝑠̄
constant for 𝑎𝑝 (𝑡) > 𝑎𝐻 . This constant speed means that, despite 𝑥(𝑡) being a step function,
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Figure 5-2: The effect of We∗ on 𝜏∗𝑐 as modeled by (5.29) (——) compared to Monte Carlo
simulations of daughter distributions, •, A; +, B; ×, C; □, D; ◦, E; ◦, F (see table 5-1). (5.9) is used
to model the Hinze scale. The 95% C.I. on all 𝜏∗𝑐 is < 1%.

after a sufficient number of steps, we can treat fragmentation as a continuous process and
apply the approximation 𝑥(𝑡) ≈ 𝑡 𝑠̄ with reasonable (statistical) accuracy. Thus, we can
approximate 𝜏𝑐 as the distance in 𝑥 between 𝑎𝑚𝑎𝑥 and 𝑎𝐻 divided by this speed,

𝜏𝑐 =

(︂
𝜀−1/3𝑎𝑚𝑎𝑥2/3

)︂
−

(︂
𝜀−1/3𝑎𝐻2/3

)︂
𝑠̄

. (5.28)

Nondimensionalizing 𝜏∗𝑐 = 𝜏𝑐 𝜀1/3𝑎𝑚𝑎𝑥−2/3 and defining We𝑚𝑎𝑥 to be the We𝐵 associated
with 𝑎𝑚𝑎𝑥 ,

𝜏∗𝑐 = 𝐶𝜏
[︁
1 − (We𝑚𝑎𝑥/We𝐻)−2/5]︁ ; 𝐶𝜏 ≡ 1

/︁
𝑠̄ . (5.29a, b)

Despite the approximation used to derive (5.28) from 𝑠̄ in (5.27), (5.29) is expected to be
valid for We∗ ≡ We𝑚𝑎𝑥/We𝐻 not small (where multiple fragmentation events are generally
necessary to reach 𝑎𝐻). This is confirmed by Monte Carlo simulations of prescribed
fragmentation statistics (figure 5-2).

For We ∼ ∞ we recover the same 𝜏𝑐 ∝ 𝜀−1/3𝑎𝑚𝑎𝑥2/3 scaling as previous work which
assumes identical fragmentation (Deike et al., 2016). This scaling of 𝜏𝑐 is like 𝜏ℓ, demon-
strating that the fragmentation rate is the dominant factor in determining 𝜏𝑐. Our propagation
speed-based analysis provides the scaling constant 𝐶𝜏 which quantifies the contribution of
fragmentation rate, as well as fragmentation statistics 𝑚̄ and 𝑓 ∗𝑉 (𝑣∗). For large-but-finite We,
(5.29) captures the effect of the We-driven separation between 𝑎𝑚𝑎𝑥 and 𝑎𝐻 on the value
of 𝜏𝑐; however, we note that the scaling or 𝜏𝑐 with We will be more complex for small We
(We ∼ We𝐻) as we have not incorporated the effect of finite-We on fragmentation rate, such
as modeled by (5.6), into our propagation speed-based analysis. In section 5.5.3, DNS shows
for what sufficiently large We this effect is negligible.

Although primarily driven by fragmentation rate, 𝜏𝑐 is also related to the fragmentation
statistics 𝑚̄ and 𝑓 ∗𝑉 (𝑣∗) (Qi et al., 2020), which is now quantified by the scaling constant 𝐶𝜏.
To describe these relationships, we follow Gaylo et al. (2021) and isolate the effect of 𝑓 ∗𝑉
from 𝑚̄ through a daughter-distribution constant 𝐶 𝑓 , defined as the ratio between 𝐶𝜏 and a
𝐶𝜏 found using the same 𝑚̄ but identical fragmentation, 𝑓 ∗𝑉 (𝑣∗) = 𝛿(𝑣∗ − 1/𝑚̄), where 𝛿 is
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Daughter Distribution 𝑚 𝑓 ∗𝑉 (𝑣∗) 𝐶 𝑓 𝐶 𝑓
★

A Valentas et al. (1966) 2 𝛿(𝑣∗ − 1/2) 1 1
B Martínez-Bazán et al. (1999b) 2 (𝑣∗)2/9 (1 − 𝑣∗)2/9 1.348 1.314
C Tsouris & Tavlarides (1994) 2 21/3 − (𝑣∗)2/3 − (1 − 𝑣∗)2/3 2.432 2.255
D Martínez-Bazán et al. (2010) 2 (𝑣∗)−4/9 (1 − 𝑣∗)−4/9 1.782 1.712
E Diemer & Olson (2002) 3 (𝑣∗)1/4 (1 − 𝑣∗)3/2 1.269 1.253
F Diemer & Olson (2002) 4 (𝑣∗)1/2 (1 − 𝑣∗)7/2 1.190 1.185

Table 5-1: Daughter distributions used in Monte Carlo simulations and corresponding daughter-
distribution constants 𝐶 𝑓 defined by equation (5.30) compared to 𝐶 𝑓

★ defined by Gaylo et al. (2021,
Eq. (4.3)). Note, a constant to ensure

∫
𝑓 ∗𝑉 (𝑣∗)d𝑣∗ = 1 is omitted for brevity.

the Dirac delta function. This gives

𝐶𝜏 =
𝐶 𝑓 /𝐶𝛺,∞
1 − 𝑚̄−2/9 ; 𝐶 𝑓 =

1 − 𝑚̄−2/9

1 − 𝑚̄
∫ 1
0 𝑣∗11/9 𝑓 ∗𝑉 (𝑣∗) d𝑣∗

. (5.30a, b)

In table 5-1 we compare this 𝐶 𝑓 for general fragmentation cascades to the similar constant
(hereafter denoted as 𝐶 𝑓

★) derived by Gaylo et al. (2021) for the special case of power-
law entrainment. The values are nearly equivalent, and, noting that (9/2) (ln 𝑚̄)−1 ≈
(1 − 𝑚̄−2/9)−1, (5.30) predicts similar 𝜏𝑐 as Gaylo et al. (2021) for their special case.

5.3.4 Measurement-interval independence of volume-propagation
speed

A consequence of 𝑠̄ being constant for 𝑎𝑝 (𝑡) > 𝑎𝐻 is that the time-averaged value and the
instantaneous speed are equal, E {⟨𝑠(𝑡)⟩𝑇 } = 𝑠̄, so long as 𝑎𝑝 (𝑡 + 𝑇) > 𝑎𝐻 . Thus, to obtain
𝑠̄ we must choose a 𝑇 such that Pr{𝑎(𝑡 + 𝑇) > 𝑎𝐻} ≈ 1. For measurements of an initial
parent-bubble radius 𝑎 = 𝑎𝑝 (𝑡), we define an upper bound 𝑇𝑈 as the interval we expect
𝑎𝑝 (𝑡 + 𝑇𝑈) ∼ 𝑎𝐻 and require 𝑇 ≪ 𝑇𝑈 . Through the same arguments used to derive 𝜏𝑐, this
upper bound is

𝑇 ≪ 𝜀−1/3𝑎2/3𝐶𝜏
[︁
1 − (We𝐵/We𝐻)−2/5]︁ . (5.31)

For 𝑎 = 𝑎𝑚𝑎𝑥 this is simply 𝑇 ≪ 𝑇𝑈 = 𝜏𝑐. From Monte Carlo simulations of prescribed
fragmentation statistics measuring initial bubbles 𝑎 = 𝑎𝑚𝑎𝑥 , figure 5-3 confirms that E {⟨𝑠⟩𝑇 }
gives an exact, 𝑇-independent measurement of 𝑠̄ for 𝑇 ≪ 𝜏𝑐. 𝑇𝑈 provides an upper bound
on 𝑇 for experiments or simulations, although we point out that it is an a posteriori measure
because 𝐶𝜏 is derived from 𝑠̄.

Finally, 𝑇-independence means dE {⟨𝑠(𝑡)⟩𝑇∗} /d𝑇∗ = 0. Taking the derivative of (5.26),
we obtain

𝑇∗
dE

{︂
[𝑣𝑅 (𝑇∗)]2/9

}︂
d𝑇∗

− E
{︂
[𝑣𝑅 (𝑇∗)]2/9

}︂
+ 1 = 0 , (5.32)
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Figure 5-3: Measurements of E{⟨𝑠⟩𝑇 } from Monte Carlo simulations of daughter distributions A–F
(see table 5-1) at a range of 𝑇/𝜏𝑐, normalized by 𝑠̄ calculated using (5.27). Colors based on We∗:
green, 2; red, 50; blue, 100; magenta, 200, where (5.9) is used to model the Hinze scale. The 95%
C.I. on E{⟨𝑠⟩𝑇 } for 𝑇/𝜏𝑐 < 1 is < 3%.

which is solved by
1 − E

{︂
[𝑣𝑅 (𝑇∗)]2/9

}︂
𝑇∗

= Constant , (5.33)

where 𝑐 is some constant. With (5.19) this gives,

1 − exp[−𝐶𝛺,∞ 𝑇∗]
𝑇∗

[︃
1 − 𝑚̄(𝑇∗)

∫ 1

0
𝑣∗𝑛+1 𝑓 ∗𝑉 (𝑣∗;𝑇∗) d𝑣∗

]︃
= Constant . (5.34)

This bounds how scale-invariant fragmentation statistics 𝑚̄(𝑇∗) and 𝑓 ∗𝑉 (𝑣∗;𝑇∗) can depend
on 𝑇∗ and provides insight into the relationship between 𝑚̄(𝑇∗) and 𝑓 ∗𝑉 (𝑣∗;𝑇∗) measured at
large 𝑇∗ versus the theoretical 𝑇∗ → 0 limiting case used in PBE. This is useful because
a finite relaxation time 𝜏𝑟 implies a lower bound (𝑇 > 𝜏𝑟) for measuring fragmentation
statistics that are compatible with the PBE no-hysteresis assumption.

5.4 Direct numerical simulation of bubble fragmentation
in homogeneous isotropic turbulence

Using the solver described in Chapter 2, we perform DNS of populations of bubbles
fragmenting in HIT. During these simulations, ELA allows direct measurement of individual
fragmentation events (Gaylo et al. 2022; see also Chapter 3). A summary of the DNS
performed is provided in table 5-2. In section 5.5 we will use these measurements of
fragmentation to quantify the three fundamental timescales of fragmentation.

5.4.1 Simulation setup
The simulation can be broken into two phases. For the first phase, we develop steady single-
phase HIT. To initialize the second step, we take the velocity field from the single-phase HIT
and create bubbles by prescribing the VOF field. We measure the fragmentation of these
bubbles.
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We𝑇 Re𝑇 We𝐵 Δ/𝜂𝑇 WeΔ Δ/𝑎𝐻 𝑁sims 𝑁frag 𝐶𝛺 𝐶𝜏

400 200 101–142 1.1 0.66 0.71 7 213 1.64 ± 0.42 8.9 ± 1.9

200 200 50–71

2.2 0.66 0.93 7 106 0.60 ± 0.13 16.1 ± 2.9
1.5 0.44 0.62 7 189 1.21 ± 0.34 10.2 ± 2.5
1.1 0.33 0.47 7 208 1.64 ± 0.44 9.8 ± 2.8
0.7 0.22 0.31 5 187 1.77 ± 0.26 10.3 ± 2.1

100 200 25–36 1.1 0.16 0.31 7 218 1.50 ± 0.27 10.0 ± 2.3

50 200 13–18 1.1 0.08 0.20 7 174 0.93 ± 0.13 15.2 ± 2.9

25 200 6.3–8.9 1.1 0.04 0.13 7 113 0.44 ± 0.12 27.1 ± 5.5

Table 5-2: Summary of HIT simulations performed and values measured using Δ𝑡𝑠/𝑡ℓ = 0.4,
including 95% C.I.. 𝑁sims is the number of simulations (each with different initial bubble populations)
and 𝑁frag is the total number of fragmentation events. 𝑎𝐻 is calculated using We𝐻 ≈ 7 from §5.5.2.

To develop the initial turbulent velocity field for the simulation, we use the linear forcing
method described in §2.1.5 on a triply periodic cubic domain. Following Rosales & Meneveau
(2005), we choose the forcing parameter 𝐴 = 1/3 and domain length 𝐿 = 5.2751 to obtain a
characteristic turbulent dissipation rate 𝜀 = 1 and velocity fluctuation 𝑢rms = 1. An equivalent
interpretation is that we use the characteristic turbulent scales to nondimensionalize all
values in the simulation (i.e., to go from (2.1b) to (2.5)). For all simulations we set Re = 200
in (2.5). Because we have nondimensionalized by the characteristic turbulent scales, the
turbulent Reynolds number is the same, Re𝑇 = 𝑢4

rms𝜌𝑤/𝜀𝜇𝑤 = 200. The velocity field is
initialized with random noise, and then the single-phase simulation runs until 𝑢rms and 𝜀
reach a statistically steady state.

Using the single-phase HIT as the initial velocity field, we perform simulations with
an ensemble of different initial air-water1 bubble populations, all with void fraction ∼ 1%.
Populations are created by randomly distributing (without overlap) spherical bubbles with
radii between 3𝐿/256 and 15𝐿/256 following 𝑁 (𝑎) ∝ 𝑎−10/3. By repeating the random
generation and distribution of bubble populations in the (same) initial HIT velocity field,
unique but statistically similar initial bubble populations are generated to provide statistical
variation between our ensemble simulations.

After applying the VOF field describing the initial population of (spherical) bubbles,
we continue the simulation. Although this abrupt introduction of bubbles to previously
single-phase HIT is non-physical, numerical simulations rapidly adjust (Yu et al., 2019;
Rivière et al., 2021). As the bubble population evolves under the effects of fragmentation,
we continue to apply linear forcing, but (as discussed in §2.1.5) we only apply it to regions
of water. This maintains 𝜀 ≈ 1 and 𝑢rms ≈ 1. For the two-phase simulations, we apply a
range of We to obtain different turbulent Weber numbers, We𝑇 = 𝑢5

rms/𝜀(𝜎/𝜌𝑤), shown in
table 5-2.

1For this chapter, we use 𝜆 = 0.001 and 𝜂 = 0.01, only slightly different than 𝜆 = 0.00123 and 𝜂 = 0.0159
used elsewhere.
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(a) 𝑡/𝑡ℓ = 0 (b) 𝑡/𝑡ℓ = 1 (c) 𝑡/𝑡ℓ = 3

Figure 5-4: Evolution of the 𝑓 = 0.5 iso-surface in the three-dimensional HIT simulation with
We𝑇 = 100.
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Figure 5-5: Average bubble size distribution 𝑁 (𝑎) for We𝑇 = 100 simulations at times: □, 𝑡/𝑡ℓ = 0;
□, 𝑡/𝑡ℓ = 1; and □, 𝑡/𝑡ℓ = 3. 𝑁 (𝑎) ∝ 𝑎−10/3 is provided for reference over the range of initialized
spherical bubbles (– – –) and the range of measured parent bubbles, 𝑎0 < 𝑎 < 1.2𝑎0 (——).
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For one of the We𝑇 = 100 simulations, figure 5-4 shows the evolution of the bubble
population. Based on averaging over the ensemble of 7 We𝑇 = 100 simulations, figure 5-5
shows the evolution of the bubble size distribution 𝑁 (𝑎). We note that, with our focus on
bubbles 𝑎 > 𝑎𝐻 , the transition to a distinct power-law regime for 𝑁 (𝑎 < 𝑎𝐻) is not captured
(Deane & Stokes, 2002). During the evolution, we use ELA to measure fragmentation
statistics for parent bubbles of radii 𝑎0 < 𝑎 < 1.2𝑎0, where 𝑎0 = 7𝐿/256 provides a balance
between the number of observed fragmentation events per simulation and resolution of the
daughter bubbles. By initializing the bubbles to follow an equilibrium fragmentation cascade
𝑁 (𝑎) ∝ 𝑎−10/3 (Garrett et al., 2000), the fragmentation of bubbles 𝑎 > 𝑎0 maintains the
population of bubbles 𝑎 ∼ 𝑎0 for 𝑡/𝑡ℓ < 3, where

𝑡ℓ = (0.42)−1𝜀−1/3𝑎0
2/3 (5.35)

is an a priori estimate of 𝜏ℓ (Martínez-Bazán et al., 1999a). To exclude the fragmentation of
the initial set of spherical bubbles (see figure 5-4), we study fragmentation over 1 < 𝑡/𝑡ℓ.
Thus, by measuring fragmentation statistics over 1 < 𝑡/𝑡ℓ < 3, we measure a quasi-steady
population of parent bubbles that are realistically formed by a fragmentation cascade.

Chapter 3 explains how ELA allows us to identify fragmentation events and measure
the daughter bubbles (see §3.2.2 for details). An important note is that ELA measures the
evolution of bubbles between snapshots 𝑡𝑛 and 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡𝑠. Thus, the measurement
interval 𝑇 discussed in section 5.2.2 for general (experimental or numerical) measurements
of fragmentation is equivalent to Δ𝑡𝑠 for ELA measurements.

5.4.2 Grid independence
As discussed in Chapter 2 (see §2.1.4), the choice of grid size, Δ, is driven by resolving
the Kolmogorov microscale (Δ/𝜂𝑇 ≲ 1) and surface tension (WeΔ ≲ 1 and/or Δ/𝑎𝐻 ≲ 1).
Based on these metrics we find 𝐿/Δ = 256 (Δ/𝜂𝑇 = 1.1 in table 5-2) resolves turbulence
and surface tension for our entire range of We𝑇 .

In addition to resolving the general physics, another grid resolution concern is resolving
the daughter bubbles produced by a fragmentation event. With no clear lower limit to the
ratio between the daughter-bubble and parent-bubble volume (𝑣∗), grid resolution limitations
require us to filter out daughter bubbles of radius 𝑎 < 2Δ. Figure 5-6 shows that the bubble
size distribution of filtered bubbles, 𝑁 (𝑎 > 2Δ), is grid independent. For 𝐿/Δ = 256 and
parent bubbles 𝑎0 = 7𝐿/256, daughter bubbles of radius 𝑎 < 2Δ correspond to 𝑣∗ < 0.02.
While this filter prevents us from measuring the full range of possible daughter bubbles,
especially sub-Hinze daughters, we expect this to have little effect on the statistics of interest
for two reasons. First, sub-Hinze bubble production by fragmentation happens concurrently
with the production of large daughter bubbles (Rivière et al., 2022), so excluding small
daughters should not affect the measured rate of fragmentation used to obtain 𝜏𝑟 and 𝜏ℓ.
Second, for 𝜏𝑐, the integral of the daughter-size distribution in (5.30) weights local daughter
production (𝑣∗ ∼ 1/𝑚̄) over non-local daughter production (𝑣∗ ≪ 1), making the contribution
of the excluded small daughters small. This is related conceptually to locality, which suggests
𝑣∗ ≪ 1 can be neglected when modeling the cascade (Chan et al., 2021b,c).

To confirm that we resolve turbulence and surface tension, that the filter has a negligible
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Figure 5-6: Average bubble size distribution 𝑁 (𝑎) for We𝑇 = 200 at time 𝑡/𝑡ℓ = 3 from simulations
with girds: ×, 𝐿/Δ = 128; ×, 𝐿/Δ = 192; ×, 𝐿/Δ = 256; ×, 𝐿/Δ = 384; Horizontal axis is
normalized by Δ = 𝐿/256 and 𝑁 (𝑎) ∝ 𝑎−10/3 is provided for reference over the range of initialized
spherical bubbles (– – –) and the range of measured parent bubbles, 𝑎0 < 𝑎 < 1.2𝑎0 (——).
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Figure 5-7: Grid-convergence study for (a) fragmentation rate constant 𝐶𝛺 and (b) convergence
constant 𝐶𝜏 based on simulations of We𝑇 = 200 (parent bubbles We𝐵 = 50 – 71) with different grids,
measured using 𝑇/𝑡ℓ = 0.4. Error bars indicate 95% C.I..
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Figure 5-8: Measured fragmentation-rate constant 𝐶𝛺 normalized by (𝐶𝛺)𝑟𝑒 𝑓 , the value measured
using 𝑇/𝑡ℓ = 0.4, for We𝐵 of (◦) 101–142; (×) 50–71; (□) 25–36; (△) 13–18; (▽) 6.3–8.9. Variance-
weighted least-squares fit of all data to (5.37) (– – –) gives 𝐶𝑟 = 0.11 and 𝐴 = 2.2 (𝑅2 = 0.954).

effect, and (more broadly) that the statistics we measure are independent of the grid, we
perform a convergence study for We𝑇 = 200 using three additional grids, 𝐿/Δ = 128, 192,
and 384. The results of this convergence study (see figure 5-7) show that our measurements
of fragmentation statistics E {⟨𝑠⟩𝑇 } and 𝑝frag(𝑎;𝑇) (from which the timescales will be
calculated) are grid independent for 𝐿/Δ ≥ 256.

5.5 Estimating the fundamental timescales using Eule-
rian label advection

5.5.1 Relaxation time, 𝜏𝑟
We first seek the relaxation time, 𝜏𝑟 . For each simulation, we use 6 instances of ELA with
different measurement intervals 𝑇 = Δ𝑡𝑠. Using (5.5) and (5.8), we calculate the value of
𝐶𝛺 (We𝐵;𝑇) from each 𝑝frag(𝑎;𝑇) measured using ELA:

𝐶𝛺 (We𝐵;𝑇) = − ln
[︁
1 − 𝑝frag(𝑎;𝑇)]︁
𝑇𝜀1/3𝑎−2/3 . (5.36)

Figure 5-8 shows how 𝑇 affects the value of 𝐶𝛺 (We𝐵;𝑇) for a range of We𝐵. If the no-
hysteresis assumption were valid for all 𝑇 , 𝐶𝛺 would be a constant for each We𝐵; however,
figure 5-8 shows a strong dependence on small 𝑇∗ = 𝑇𝜀1/3𝑎−2/3.

We observe that the dependence of 𝐶𝛺 (We𝐵;𝑇) on 𝑇 is approximately exponential,
which provides an empirical definition of the relaxation time 𝜏𝑟 as well as the hysteresis
strength 𝐴:

𝐶𝛺 (We𝐵;𝑇)/𝐶𝛺 (We𝐵;𝑇 = ∞) = 1 + 𝐴 exp[−𝑇/𝜏𝑟] . (5.37)

We observe that 𝜏𝑟 scales like 𝜏ℓ. Thus, we define the scaling constant 𝐶𝑟 and write

𝜏𝑟 = 𝐶𝑟 𝜀
−1/3𝑎2/3 , (5.38)

where least-squares regression of the combined data for all We𝐵 gives𝐶𝑟 ≈ 0.11 and 𝐴 ≈ 2.2,
with a coefficient of determination 𝑅2 = 0.954. As shown in figure 5-8, (5.37) does a good
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Figure 5-9: Fragmentation rate constant 𝐶𝛺 as functions of We𝐵, measured using 𝑇/𝑡ℓ = 0.4. Error
bars indicate 95% C.I.. Variance-weighted least-squares fit to (5.6) (– – –) gives We𝐻 = 6.9 and
𝐶𝛺,∞ = 1.4 (𝑅2 = 0.890).

job explaining the dependence of 𝐶𝛺 (We𝐵;𝑇) on 𝑇 for all We𝐵 considered.
The scaling of 𝜏𝑟 being like 𝜏ℓ rather than, say, bubble natural period, We−1/2

𝐵 𝜀−1/3𝑎2/3,
is notable because it suggests that, at least for We𝐵 > We𝐻 , the physical mechanisms for
the decay of hysteresis are not related to surface tension. Future, more detailed, studies
of the dynamics of individual bubbles are necessary to understand hysteresis and identify
the mechanisms for its decay. Rather than focus on the mechanism of hysteresis, for our
statistical study of fragmentation our primary concern is more pragmatic: answering when
𝑇 ≫ 𝜏𝑟 and hysteresis can be neglected. Hereafter, we measure all results with 𝑇/𝑡ℓ = 0.4
(corresponding to 𝑇/𝜏𝑟 ≈ 8), which guarantees that effect of hysteresis on our estimation of
𝜏ℓ and 𝜏𝑐 is negligible.

5.5.2 Bubble lifetime, 𝜏ℓ
We now seek the expected bubble lifetime, 𝜏ℓ. Figure 5-9 shows our measurements of
𝐶𝛺 (We𝐵) and the fit to the model by Martínez-Bazán et al. (1999a), repeated here for clarity:

𝐶𝛺 (We𝐵) = 𝐶𝛺,∞
√︁

1 −We𝐻/We𝐵 . (5.6)

Non-linear least-squares regression gives We𝐻 = 6.9 and 𝐶𝛺,∞ = 1.4, with a coefficient of
determination 𝑅2 = 0.890. For We𝐵 ≫ We𝐻 , this gives a bubble lifetime

𝜏ℓ =
(︁
𝐶𝛺,∞

)︁−1
𝜀−1/3𝑎2/3 . (5.39)

Compared to previous work, our value for the Hinze scale, We𝐻 = 6.9, is similar to
We𝐻 = 4.7 measured by Martínez-Bazán et al. (1999a) and We𝐻 = 2.7 − 7.8 by Risso &
Fabre (1998). However, we obtain 𝐶𝛺,∞ = 1.4, greater than 𝐶𝛺,∞ = 0.42 measured by
Martínez-Bazán et al. (1999a) and𝐶𝛺,∞ = 0.95 from HIT simulations by Rivière et al. (2021).
This means we predict a shorter 𝜏ℓ than previous work. An important distinction between
our fragmentation measurements and previous experimental and numerical measurements is
that we measure bubbles that have been formed as the daughters of previous fragmentation,
so the bubbles are already distorted by fragmentation.

To confirm that our larger value of 𝐶𝛺,∞ is due to the way bubbles are created, we
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Figure 5-10: Convergence constant 𝐶𝜏 (a) as functions of We𝐵, measured using 𝑇/𝑡ℓ = 0.4 and (b)
as a function of 𝑇 for We𝐵 = 50–71. Error bars indicate 95% C.I.. The estimated large-We𝐵 value of
𝐶𝜏 = 9 (– – –) is included for reference.

repeat the measurement of fragmentation statistics, but this time over an earlier time in our
simulation, 0 < 𝑡/𝑡ℓ < 1, when (as opposed to the later time 1 < 𝑡/𝑡ℓ < 3) many parent
bubbles which started spherical have not yet fragmented. When we measure this earlier time
range (denoted by (·)𝑡<𝑡ℓ ), we obtain a similar (We𝐻)𝑡<𝑡ℓ = 7.0 but an appreciably smaller
(𝐶𝛺,∞)𝑡<𝑡ℓ = 0.88 (with 𝑅2 = 0.974). As our interest is bubbles within fragmentation
cascades, our value of 𝐶𝛺,∞ ≈ 1.4 is more relevant for bubbles formed by fragmentation.

Finally, we note that 1/𝐶𝛺,∞ is an order of magnitude larger than 𝐶𝑟 , meaning that
𝜏ℓ ≫ 𝜏𝑟 . As discussed in section 5.2.2, this confirms that no-hysteresis assumption, a key
assumption for PBE, is reasonable when modeling fragmentation cascades.

5.5.3 Convergence time, 𝜏𝑐

We now seek the convergence time, 𝜏𝑐. ELA gives us direct access to measure the (𝑇-
dependent) size distribution of daughter bubbles (shown in Appendix E), from which
E {[𝑣𝑅 (𝑇∗)]𝑛} can easily be calculated. With (5.25), this gives us the time-averaged speed
E {⟨𝑠⟩𝑇∗}. If (5.31) is satisfied and 𝑇 ≫ 𝜏𝑟 so we can neglect hysteresis, we expect E {⟨𝑠⟩𝑇 }
to give a 𝑇-independent measurement of 𝐶𝜏 = 1/𝑠̄. Figure 5-10a shows the value of 𝐶𝜏 we
obtain over a range of We𝐵 using 𝑇/𝑡ℓ = 0.4 (𝑇/𝜏𝑟 ≈ 8). Recall that the model we developed
in section 5.3, as a result of large-We𝐵 assumptions, predicts a constant 𝐶𝜏. We find that
this is accurate for We ≫ We𝐻 , or more specifically We > 30. In this large-We𝐵 regime, we
measure 𝐶𝜏 ≈ 9.

To validate that our measurement is 𝑇-independent, for We𝐵 = 50–71 we also measure
𝐶𝜏 using a range of 𝑇 (figure 5-10b). As expected, for 𝑇 ≲ 𝜏𝑟 we see a dependence on 𝑇
due to hysteresis, but for 𝑇 ≫ 𝜏𝑟 𝐶𝜏 is independent of 𝑇 . In addition to the 𝜏𝑟 lower bound,
(5.31) implies an upper bound on the choice of 𝑇 . However, for all the 𝑇 we consider, (5.31)
(with 𝐶𝜏 = 9) gives 𝑇 ≪ 𝑇𝑈 for We𝐵 > 30. This means the Hinze scale driven upper bound
on 𝑇-independence described in §5.3.4 is not relevant to these measurements.
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5.6 Discussion
We now examine how our quantification of the three fundamental fragmentation timescales
informs the general study of fragmentation.

5.6.1 𝜏𝑟 informs choice of measurement interval
For 𝜏𝑟 , our results suggest that the physical mechanism for the decay of hysteresis with
bubble age is independent of surface tension for We𝐵 > We𝐻 and that 𝜏𝑟 scales like 𝜏ℓ. The
respective scaling constants we estimate from DNS of HIT differ by an order of magnitude
(𝐶𝑟 ≪ 1/𝐶𝛺,∞), suggesting that 𝜏𝑟 ≪ 𝜏ℓ is always true for We𝐵 > We𝐻 . Although the
physical mechanism for the decay of hysteresis is still unclear, this shows that hysteresis can
be assumed negligible when modeling fragmentation, validating an essential assumption of
PBE. More practically, knowledge of 𝜏𝑟 also informs the choice of measurement interval
in experiments and simulations. 𝑇 ≫ 𝜏𝑟 makes the effect of hysteresis on measurements
negligible, ensuring that the measured fragmentation statistics are compatible with PBE.
Applied to ELA, this provides a lower bound on the choice of snapshot interval, Δ𝑡𝑠 ≫ 𝜏𝑟 .

5.6.2 𝜏𝑐 provides a new constraint on fragmentation models
The insight that the convergence time 𝜏𝑐 provides into the evolution of the bubble size
distribution in fragmentation-dominated bubbly flows has been discussed by Qi et al. (2020)
and Deike et al. (2016), and we have now quantified 𝜏𝑐 directly. now quantified 𝜏𝑐 directly.
For large We𝐵 where the effect of surface tension on fragmentation rates is negligible, we
find

𝜏𝑐 = 𝐶𝜏𝜀
−1/3𝑎𝑚𝑎𝑥2/3 [︁

1 − (We𝑚𝑎𝑥/We𝐻)−2/5]︁ , (5.40)

where We𝑚𝑎𝑥 is the bubble Weber number We𝐵 of the largest bubble in the cascade (radius
𝑎𝑚𝑎𝑥) and we estimate 𝐶𝜏 ≈ 9 and We𝐻 ≈ 6.9 from DNS. In addition, as we can now
express 𝜏𝑐 in terms of realistic fragmentation statistics for We > 30, 𝜏𝑐 also informs large-We
fragmentation models. Inspired by (5.4), we rearrange (5.30) to provide a new bound on a
moment of the daughter-size distribution 𝑓 ∗𝑉 :

𝑚̄(𝑎′)
∫ 1

0
𝑣∗11/9 𝑓 ∗𝑉 (𝑣∗; 𝑎′) d𝑣∗ = 1 − (︁

𝐶𝜏𝐶𝛺,∞
)︁−1 , (5.41)

where our estimations of 𝐶𝜏 ≈ 9 and 𝐶𝛺,∞ = 1.4 from DNS give 0.92 for the right side of
(5.41), independent of parent bubble radius 𝑎′. For a physical interpretation, (5.4) bounds
the relationship between daughter-size distributions and 𝑚̄ to guarantee volume conservation,
while (for We𝐵 > 30) (5.41) bounds the relationship to match the empirical value of 𝜏𝑐.

Many existing fragmentation models assume binary breakup (𝑚̄ = 2). To evaluate how
well these meet (5.41), we focus on the proposed daughter-size distributions through 𝐶 𝑓 ,
which includes the integral in (5.41). With 𝑚̄ = 2, 𝐶𝜏 ≈ 9, and 𝐶𝛺,∞ = 1.4, (5.30) gives
𝐶 𝑓 ≈ 1.8. Because 𝐶 𝑓 indicates how much longer 𝜏𝑐 is compared to the case of identical
fragmentation, this shows that 𝜏𝑐 is 1.8 times longer for fragmentation in HIT than what
would be predicted if one assumes identical binary-fragmentation. Comparing to more
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realistic binary daughter-distributions (see B–D in table 5-1), we see good agreement with
the distribution proposed by Martínez-Bazán et al. (2010). We also compare our 𝐶 𝑓 to the
binary daughter-distribution model by Qi et al. (2020),

𝑓𝑉 (𝑣∗) = 𝜔
[︃

1−cos(2𝜋𝑣∗)∫ 1
0 [1−cos(2𝜋𝑣∗)] d𝑣∗

]︃
+ (1 − 𝜔)

[︄
(𝑣∗)−4/3+(1−𝑣∗)−4/3∫ 0.98

0.02

[︂
(𝑣∗)−4/3+(1−𝑣∗)−4/3

]︂
d𝑣∗

]︄
, (5.42)

who set the tuning parameter 𝜔 = 0.3 to match experimental measurements of 𝜏𝑐. For this
daughter-distribution model, (5.30) gives𝐶 𝑓 = 1.741, in very good agreement with our value
of 𝐶 𝑓 ≈ 1.8. Although we assume 𝑚̄ = 2 here for illustration, this analysis is applicable to
any 𝑚̄. Rather than attempting to compare the details of disparate fragmentation models,
relating 𝜏𝑐 to the fragmentation statistics specified by these models allows us to directly
compare the physical predictions each model makes regarding the evolution of the bubble
size distribution through a simple scalar quantity.

5.7 Conclusion
As discussed in Chapter 1, a well-known equilibrium for the bubble size distribution is
𝑁 (𝑎) ∝ 𝑎−10/3, which is the result of fragmentation cascades at moderate and large We𝐵
(Garrett et al., 2000; Gaylo et al., 2021). More generally, there is an interest in a statistical
model of fragmentation for use in the PBE (1.2). In this chapter we describe three fundamental
timescales characterizing the statistics of fragmentation and the resulting fragmentation
cascade. These timescales directly support statistical modeling of fragmentation, and,
although our focus here is on statistical descriptions of fragmentation, the results here also
help inform future mechanistic study of fragmentation.

One fundamental timescale is the relaxation time 𝜏𝑟 which characterizes the time after
fragmentation over which hysteresis cannot be neglected. From DNS measurements, we
provide an empirical definition of 𝜏𝑟 based on when measured fragmentation rates become
independent of the measurement interval 𝑇 . We find that 𝜏𝑟 = 𝐶𝑟𝜀−1/3𝑎2/3, where 𝐶𝑟 ≈ 0.11
independent of moderate/large We. This We𝐵-independence suggests the physical mechanism
causing 𝜏𝑟 at these We𝐵 is unrelated to surface tension. Although understanding hysteresis
and its decay is an area of future work, by providing 𝜏𝑟 we identify the timescales over which
hysteresis can be neglected.

A second fundamental timescale is the expected lifetime 𝜏ℓ of a bubble from formation
by fragmentation to further fragmentation. For 𝜏ℓ ≫ 𝜏𝑟 , 𝜏ℓ = [𝐶𝛺 (We𝐵)]−1𝜀−1/3𝑎2/3

is the inverse of the fragmentation rate. Fitting our DNS results for bubbles within the
fragmentation cascade to the square-root model of We𝐵-dependence by Martínez-Bazán
et al. (1999a) (eq. (5.6)), we find the Hinze-scale We𝐻 ≈ 6.9, in agreement with previous
experiments, but measure a smaller 𝜏ℓ corresponding to a higher scaling constant (at large
We) 𝐶𝛺,∞ ≈ 1.4 (compared to 𝐶𝛺,∞ ≈ 0.42 reported by Martínez-Bazán et al. (1999a)). We
show that this higher value of 𝐶𝛺,∞ is related to formation of the bubbles by a fragmentation
cascade. For modeling fragmentation cascades, this higher 𝐶𝛺,∞ is likely more relevant. In
either case, we find 𝜏𝑟 ≪ 𝜏ℓ for all We, validating the use of the no-hysteresis assumption in
modeling fragmentation.
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Finally, we consider the fundamental timescale 𝜏𝑐 = 𝐶𝜏 [1−(We𝑚𝑎𝑥/We𝐻)−2/5]𝜀−1/3𝑎2/3
𝑚𝑎𝑥 ,

which measures the time for a Lagrangian air particle to go from the largest bubble to
the Hinze scale. This also characterizes the time for fragmentation cascades to reach the
𝑁 (𝑎) ∝ 𝑎−10/3 equilibrium. For large We𝐵, we derive 𝜏𝑐 based on the (constant) expected
speed 𝑠̄ at which a Lagrangian air particle moves through the cascade. We show that,𝐶𝜏 = 1/𝑠̄
and can thus be measured independent of 𝑇 . This result is valid for 𝜏𝑟 ≪ 𝑇 ≪ 𝜏𝑐, which
provides a bound on the choice of 𝑇 in experiments and simulations. The 𝑇-independence
of 𝐶𝜏 is confirmed by DNS measurements, which give 𝐶𝜏 ≈ 9 for We𝐵 > 30, which agrees
well with the values obtained from the fragmentation model of Martínez-Bazán et al. (2010)
and an experimentally-constrained fragmentation model of Qi et al. (2020). The relationship
between 𝐶𝜏 and fragmentation statistics in PBE provides new constraints on these statistics
at large We𝐵, limiting the possible forms of fragmentation models.

In the context of modeling the evolution of bubble populations in air entraining FST,
𝜏𝑐 is particularly relevant. If the bubble population is dominated by the effects of the
fragmentation cascade, then 𝜏𝑐 gives the characteristic time for the bubble population to
converge to 𝑁 (𝑎) ∝ 𝑎−10/3. By quantifying 𝐶𝜏, we can now obtain this convergence time 𝜏𝑐
based on the strength of turbulence (𝜀) and the largest bubble entrained by the turbulence
(𝑎𝑚𝑎𝑥). What remains then is to determine if bubble population is actually dominated by
fragmentation. In Chapter 7 we will show it is not beneath air entraining FST. Evidence of
this will include that we do not obtain 𝑁 (𝑎) ∝ 𝑎−10/3, despite considering bubble population
evolution on timescales much larger than 𝜏𝑐.
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Chapter 6

Bubble Entrainment in Free-Surface
Turbulence

In this chapter we focus on bubble entrainment, the 𝐼 (𝑎) term in the population balance
equation (1.2). The presence of air entrainment is of course the defining characteristic of
air entraining free-surface turbulence, and, by a simple argument, entrainment is the most
important mechanism because it is the original source of all the air beneath the free surface.
In this chapter we consider entrainment by free-surface turbulence, specifically entrainment
of large bubbles where surface tension effects are small. While Yu et al. (2020) made a
prediction about large bubble entrainment size distribution, they could only measure the
total bubble size distribution 𝑁 (𝑎) and infer the entrainment size distribution, and it turns
out that their prediction is incorrect. Previously the only measurements of entrainment were
for ∼ 100 events (Wei et al., 2019). Using ELA (Gaylo et al. 2022; see also Chapter 3) with
DNS of multiple free-surface flows across a range of scales, we obtain direct measurements
of ∼ 60, 000 entrainment events, elucidating the entrainment size distribution 𝐼 (𝑎).

Key results from this chapter are summarized in “Size distribution of large air bubbles
entrained by strong free-surface turbulence” by Gaylo & Yue (2025).

6.1 Introduction
For the development of general statistical models of the evolution of bubble populations
beneath air entraining free surfaces (i.e., through the PBE), an immediate challenge is that
entrainment itself is one of the least understood classes of bubble evolution mechanisms.
Previous work on entrainment tends to focus on entrainment by specific large-scale flow
structures. One example is the entrapment of a cavity by a plunging breaking wave (Deike
et al., 2016; Chan et al., 2021a; Gao et al., 2021). Another example is entrainment by a
plunging jet (Kiger & Duncan, 2012; Bertola et al., 2018). While these features may be
relevant to specific air entraining flows, Brocchini & Peregrine (2001a) note that a common
feature in a large class of air entraining flows is strong turbulence beneath the free surface.
Examples include the wake behind a vessel, spilling breakers, hydrologic jumps, upwelling
of existing bubble populations, and flows in steep rivers or spillways. Motivated by the
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potential broad applicability, in this chapter we seek to characterize air entrainment that is a
direct result of this strong free-surface turbulence (FST).

As discussed in §1.1, one flow where FST entrainment is relevant is open channel flow,
often studied in the context of hydraulic modeling of rivers and spillways (Falvey & Ervine,
1988; Chanson, 1996). The quantity and size of bubbles is necessary to predict how the
dissolved oxygen content changes due to rapids or spillways (Gulliver & Rindels, 1993), so
a model of bubble entrainment is needed. While some previous work considered bubble
formation by the impact of droplets at the free surface, this mechanism is not believed
to be energetic enough to explain the observed bubbles (Rein, 1998). Wei et al. (2019)
use high speed photography to obtain time series of individual entrainment events. Their
direct measurement of individual entrainment events is unlike the more typical approach of
measuring the entire resulting bubble population (e.g. Chanson & Toombes, 2003). This
gave Wei et al. (2019) new insight into the exact mechanism for entrainment, and they show
that entrainment in open channel is the direct result of the interaction of turbulence with the
free surface. That work shows FST entrainment is relevant to channel flow and provides
what we believe to be the first direct experimental measurement of entrainment by FST.

An inherent challenge in direct experimental measurement of entrainment by FST is that
the free surface is strongly distorted, making visual access difficult. In total, Wei et al. (2019)
were only able to observe 108 entrainment events, which is insufficient to obtain detailed
statistics on how entrainment scales with bubble size and turbulence strength. For this
purpose, DNS is useful, as all features of the flow are immediately accessible. As discussed
in Chapter 3, identifying individual mechanisms from this wealth of data is not trivial;
however, ELA enables us to, for the first time, identify and measure individual entrainment
events within DNS of complex bubbly flow. In this chapter we perform DNS of a canonical
flow which isolates entrainment by FST from other entrainment mechanisms and use ELA
to obtain a large O(104) data set of FST entrainment events.

Based on the direct measurement of entrainment events in DNS, we can elucidate the
scaling of the size distribution of FST entrainment with the strength of turbulence and gravity.
This observed scaling is explained and supported by a simple mechanistic model. Although
our results are based on a flow where FST is the only entrainment mechanism, we show that
the same scaling closely describes entrainment size distributions observed in other, more
complex free-surface flows where additional entrainment mechanisms are also present.

6.2 Characterizing air entrainment by FST
From the PBE (1.2), our interest is the entrainment size distribution 𝐼 (𝑎), where 𝐼 (𝑎)𝛿𝑎𝛿𝑡 is
defined to be the number of bubbles of radius [𝑎, 𝑎 + 𝛿𝑎] created at the free surface over
time [𝑡, 𝑡 + 𝛿𝑡] in the region of interest. As discussed in Chapter 4, an entraining free surface
can be thought of as a locally flat surface (𝜂̄) plus perturbations by turbulence, in which case
it is natural to normalize 𝐼 (𝑎) by 𝐴𝐹𝑆, the area of the mean free surface in the region of
interest. In §6.2.1 we perform dimensional analysis to obtain, given some basic properties
of strong FST, the set of possible scalings of 𝐼 (𝑎)/𝐴𝐹𝑆. In §6.2.2 we describe a mechanistic
model of FST entrainment which elucidates the scaling. In §6.3.2 this scaling is confirmed
by direct measurement of 𝐼 (𝑎)/𝐴𝐹𝑆 in DNS.
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6.2.1 Dimensional analysis
As introduced in Chapter 4, the critical parameter for FST is the strength of the near-surface
turbulence relative to the restoring force of gravity, described by a turbulent Froude number
(squared)

Fr2
𝑇 =

𝜀

𝑢rmsg
, (1.1)

where g is gravitational acceleration and the strength of near surface turbulence is described
by the dissipation rate 𝜀 and the root-mean velocity fluctuations 𝑢rms. In Chapter 4 we
show that for strong FST (Fr2

𝑇 > 0.1) the turbulence will be nearly isotropic and follow
the Kolmogorov −5/3 scaling. This means that within the inertial sub range the strength
of turbulence is fully characterized by 𝜀 = [𝐿2𝑇−3]. After normalizing by the density of
water 𝜌𝑤, the energy to entrain a bubble of radius 𝑎 = [𝐿] is characterized by gravitational
acceleration g = [𝐿𝑇−2] and surface tension (𝜎/𝜌𝑤) = [𝐿3𝑇−2]. We will assume that
constitutive property ratios, such as the density ratio 𝜌𝑎/𝜌𝑤 and the viscosity ratio 𝜇𝑎/𝜇𝑤,
are fixed for air and water. This gives that for strong FST 𝐼 (𝑎)/𝐴𝐹𝑆 (dimensions [𝐿−3𝑇−1])
only depends on

𝐼 (𝑎)/𝐴𝐹𝑆 = F (𝜀, 𝑎, g, 𝜎/𝜌𝑤) . (6.1)

By dimensional analysis, we find that the system (6.1) is described by three dimensionless
parameters. While the choice of these parameters is not unique, it is useful to choose one and
only one parameter which includes surface tension 𝜎/𝜌𝑤 . We choose this parameter to be a
Bond number Bo ≡ g(2𝑎)2/(𝜎/𝜌𝑤), which describes the ratio of gravitational to surface
energy needed to form a bubble. The critical value Bo = 1 corresponds to the capillary scale,

𝑎𝑐 ≡ 0.5
√︁
𝜎/g𝜌𝑤 . (6.2)

For air water (𝜎/𝜌𝑤 ≈ 7.03 × 10−5 m3/s2) on Earth (g ≈ 9.81 m/s2), the capillary scale is
𝑎𝑐 ≈ 1.3mm. For large bubbles with radii 𝑎 ≫ 𝑎𝑐 (i.e., Bo ≫ 1), we expect the effects of
surface tension on entrainment to be negligible, so we drop Bo as a parameter and (6.1)
becomes,

𝐼 (𝑎)/𝐴𝐹𝑆 = F (𝜀, 𝑎, g) for 𝑎 ≫ 𝑎𝑐 . (6.3)

By dimensional analysis, the system (6.3) now has only two dimensionless parameters,
say Π1 and Π2. We choose 𝜀 and (2𝑎) as the repeating variables and obtain

Π1 =
𝐼 (𝑎)/𝐴𝐹𝑆

𝜀1/3(2𝑎)−11/3 ; Π2 =

(︃
𝜀2/3(2𝑎)−1/3

g

)︃1/2
. (6.4a, b)

Far from critical values of Bo or Fr2
𝑇 , we assume the underlying mechanisms are scale

invariant. This assumption implies a power law relationship, Π1 = 𝐶𝐼Π2
𝛼, where 𝛼 describes

the scaling and 𝐶𝐼 is a scaling constant. Thus, dimensional consistency and scale invariance
gives that

𝐼 (𝑎)/𝐴𝐹𝑆 = 𝐶𝐼 𝑔 [−𝛼/2] 𝜀 [𝛼/3+1/3] (2𝑎) [−𝛼/6−11/3] for 𝑎 ≫ 𝑎𝑐 , (6.5)

where 𝛼 and 𝐶𝐼 are to be determined.
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ℓ

(c)

2

Figure 6-1: Illustration of the three stages of air entrainment: (a) A free-surface deformation exists
with amplitude 𝜂, wavelength 𝜆, and minimum radius of curvature 𝑅𝜂 . (b) It interacts with an eddy
of size ℓ. (c) a bubble of radius 𝑎 ∼ 𝑅𝜂 is formed at depth 𝑑.

For FST it is useful to normalize by near-surface turbulence scales 𝐿𝑇 = 𝑢3
rms/𝜀 and

𝑇𝑇 = 𝑢2
rms/𝜀. Thus, (6.5) can be nondimensionalized

[𝐼 (𝑎)/𝐴𝐹𝑆]∗ = 𝐶𝐼 (Fr𝑇 ) [𝛼] (2𝑎∗) [−𝛼/6−11/3] for Bo ≫ 1 , (6.6)

where the nondimensionalized bubble radius is 𝑎∗ ≡ 𝑎/𝐿𝑇 and the nondimensionalized
entrainment size distribution is [𝐼 (𝑎)/𝐴𝐹𝑆]∗ ≡ [𝐼 (𝑎)/𝐴𝐹𝑆]𝐿𝑇 3𝑇𝑇 . In this nondimensional
form, it is clear that our choice of Πs was such that the value 𝛼 describes how large-bubble
air entrainment by FST scales with turbulent Froude number.1

6.2.2 Mechanistic model for large-bubble air entrainment by FST

We now propose a mechanistic model of entrainment which obtains the value of 𝛼 and
predicts the scaling we observe in DNS (see §6.3.2). As a simplified mechanistic model we
consider three stages for entrainment, illustrated in figure 6-1:

1. The interaction of the free surface with the turbulence beneath creates a deformation
of wavelength 𝜆 height 𝜂 with a minimum radius of curvature 𝑅𝜂.

2. Interaction of this surface deformation with a turbulent eddy of size ℓ causes the
deformation to collapse.

3. The collapse entrains a single bubble of radius 𝑎 at depth 𝑑.
Central to our mechanistic model is that during the collapse of the surface the minimum
radius does not change significantly, such that the radius 𝑎 of the bubble formed scales with
the minimum radius of curvature 𝑅𝜂 of the initial surface deformation,

𝑎 ∼ 𝑅𝜂 . (6.7)

This insight is consistent with observation by Wei et al. (2019) that as air entraining surface
deformations collapse the minimum radius of curvature approaches an asymptotic value
𝑟𝑐 which increases with the size of bubble eventually obtained, and is consistent with our
qualitative observations from DNS (figure 6-2).

1While the choice of Πs is not unique, any other valid Πs would simply replace 𝛼 with some 𝛼′ = 𝐶𝛼.
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Turbulence interacting with the free surface causes inter-scale energy transfer

We first seek to determine which turbulent scales are responsible for entraining a bubble
based on the insight that 𝑎 ∼ 𝑅𝜂, starting with an expression for 𝑅𝜂. As confirmed in
Chapter 4, near-surface turbulence is isotropic for Fr2

𝑇 > 0.1, allowing application of the
Kolmogorov energy cascade. Within the inertial range, the power spectrum of pressure
fluctuations is given by 𝐸𝑝𝑝 (𝜅) = 2.97 𝜌2

𝑤𝜀
4/3𝜅−7/3 (George et al., 1984). For Bo ≫ 1 such

that surface tension is negligible, the linearized relationship between pressure fluctuations
and surface elevation gives 𝑝 ∼ 𝜌𝑤g𝜂. This linear relationship means the surface elevation
spectrum 𝐸𝜂𝜂 can be related to the pressure spectrum by 𝐸𝑝𝑝 ∼ (𝜌𝑤g)2 𝐸𝜂𝜂, which gives

𝐸𝜂𝜂 (𝜅) ∼ 2.97 g−2𝜀4/3𝜅−7/3 . (6.8)

For a surface disturbance of wave number 𝜅 = 2𝜋/𝜆, the characteristic amplitude (squared)
is 𝜂2 ∝ 𝐸𝜂𝜂 (𝜅)𝛿𝜅 where 𝛿𝜅 ∼ 𝜅. Taking the square root,

𝜂 ∼ 1.72 𝑔−1𝜀2/3𝜅−2/3 . (6.9)

For a sinusoidal disturbance, the minimum radius of curvature is 𝑅𝜂 = 𝜅−2𝜂−1. Other
disturbance geometries, such as Gaussian (Wei et al., 2019), follow the same scaling
𝑅𝜂 ∝ 𝜅−2𝜂−1. Thus, for general geometries we have

𝑅𝜂 ∝ g 𝜀−2/3𝜅−4/3 . (6.10)

Applying 𝑎 ∼ 𝑅𝜂 and rearranging (6.10), we determine the turbulence scales 𝜅 that are
responsible (through interaction with the free surface) for generating bubbles of radius 𝑎,

𝜅 ∝ g3/4𝜀−1/2𝑎−3/4 . (6.11)

This is distinct from previous energy-based mechanistic models of air entrainment (Rein,
1998; Yu et al., 2020), which assume bubbles of radius 𝑎 are entrained by turbulence eddies
of similar scales, i.e., 𝜅 ∼ 𝑎−1. While those models are dimensionally consistent, they do
not capture the inter-scale energy transfer we observe with (6.11).

Before moving on, we take a moment to analyze how the inter-scale energy transfer
predicted by (6.11) introduced a significant Froude number effect that was missing from
previous models. On the local scale 𝜅 of the turbulent eddy, we can define an eddy Froude
number (squared) Fr2

𝜅 ≡ 𝜅−1/3𝜀2/3g−1, and (6.11) can be written as

𝑎𝜅 ∝ Fr−2
𝜅 . (6.12)

This is opposed to 𝑎𝜅 ∼ constant from previous models (Rein, 1998; Yu et al., 2020). To
interpret the Froude-dependence of this inter-scale energy transfer, consider a fixed g and
fixed eddies of wave number 𝜅. Increasing 𝜀 increases 𝜂, but the steeper free surface leads to
a smaller volume of air trapped when the deformation collapses, and thus a smaller radius
𝑎 for the entrained bubble. Smaller bubbles take less energy to overcome gravity, and the
energy of the eddies increases with 𝜀. The combination of these effects leads to a very
Froude number sensitive entrainment mechanism.
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Energy balance

To obtain the scaling of the entrainment distribution, we now describe the balance between
the energy available in the free surface to the work necessary to entrain bubbles. Starting
with the energy available in the free surface, for a small range of wave numbers [𝜅, 𝜅 + 𝛿𝜅],
the potential energy associated with the surface deformations (per free surface area 𝐴𝐹𝑆) is

PEwaves/𝐴𝐹𝑆 = 𝜌𝑤g 𝐸𝜂𝜂 (𝜅) 𝛿𝜅 . (6.13)

Applying the wave spectrum (6.8),

PEwaves/𝐴𝐹𝑆 ∝ 𝜌𝑤g−1𝜀4/3𝜅−7/3 𝛿𝜅 . (6.14)

We now consider the energy needed to entrain bubbles. The rate at which bubbles of
radius [𝑎, 𝑎 + 𝛿𝑎] are entrained is 𝐼 (𝑎)𝛿𝑎. For Bo ≫ 1 where surface energy is negligible,
the potential energy associated with each bubble of radius 𝑎 entrained to depth is 𝑑 (see
figure 6-1c) is 𝜌𝑤𝑔𝑣𝑑 where the volume of the bubble 𝑣 = (4𝜋/3) 𝑎3. Following Yu et al.
(2020) we assume bubbles are entrained to a depth 𝑑 ∼ 2𝑎. Multiplying the rate at which
bubbles are entrained by the energy needed for each bubble, we obtain the necessary work
done,𝑊ent, to entrain bubbles of radius [𝑎, 𝑎 + 𝛿𝑎],

𝑊ent = 𝐼 (𝑎) (8𝜋/3) 𝜌𝑤𝑔𝑎4 𝛿𝑎 . (6.15)

Figure 6-1b illustrates that for the surface deformation to collapse into a bubble, some
perturbation is necessary. We argue that this perturbation will come from eddies of size
ℓ ∼ 𝑅𝜂 (or equivalently ℓ ∼ 𝑎) and 𝑇ent is the associated eddy turnover time. From the
Kolmogorov energy cascade,

𝑇ent ∼ 𝜀−1/3𝑎2/3 . (6.16)

To balance the energy available in waves to the energy to entrain bubbles, we set
𝑊ent𝑇ent = PEwaves and obtain

𝐼 (𝑎)/𝐴𝐹𝑆 ∝ 𝑔−2𝜀5/3𝜅−7/3𝑎−14/3 (𝛿𝜅/𝛿𝑎) . (6.17)

We now apply the inter-scale energy transport which related 𝜅 to 𝑎. (6.11) gives 𝜅−7/3 ∝
g−7/4𝜀7/6𝑎7/4. The derivative of (6.11) gives 𝛿𝜅/𝛿𝑎 ∝ g3/4𝜀−1/2𝑎−7/4. Finally,

𝐼 (𝑎)/𝐴𝐹𝑆 ∝ 𝑔−3𝜀7/3𝑎−14/3 . (6.18)

This corresponds to 𝛼 = 6 in (6.5), and FST entrainment scaling with Fr6
𝑇 in (6.6).

Limits on largest entrained bubble, 𝑎𝑚𝑎𝑥

The mechanistic model we develop is based on Bo ≫ 1, leading to the lower limit 𝑎 ≫ 𝑎𝑐
for applicability of (6.18). Here we briefly address the upper limit on applicability of
(6.18). Our interest is some maximum entrained bubble 𝑎max such that 𝐼 (𝑎 > 𝑎max) ≈ 0.
The previous mechanistic argument gives two possible limits. First, in our mechanism the
collapse of the deformation is caused by an eddy of scale ℓ ∼ 𝑎. The largest turbulent eddies
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Fr2 We 𝑇sim 𝑢rms 𝜀 𝐿𝑇 Fr2
𝑇 Re𝑇 We𝑇 𝑁𝐼 𝑎max/𝐿𝑇

0.3 ∞ 256 0.27 0.027 0.76 0.03 41 – 820 0.20
0.6 ∞ 128 0.29 0.031 0.81 0.06 47 – 1908 0.30
0.9 ∞ 128 0.29 0.033 0.78 0.10 46 – 7920 0.38
1.2 ∞ 128 0.26 0.025 0.74 0.11 39 – 9308 0.34
1.8 ∞ 128 0.28 0.021 0.99 0.14 54 – 24170 0.27
1.2 400 127 0.31 0.032 0.93 0.12 58 36 526 0.29
1.2 200 128 0.34 0.039 1.06 0.13 73 25 433 0.23
1.2 100 128 0.30 0.044 0.60 0.18 35 5.2 321 0.62

Table 6-1: List of forced FST simulations used for entrainment measurements. Turbulence properties
𝑢rms and 𝜀 are measured using (6.21). The characteristic length scale 𝐿𝑇 = 𝑢3

rms/𝜀 is used to
calculate the near-surface turbulent Froude number Fr2

𝑇 = (𝑢2
rms/𝐿𝑇 )Fr2, turbulent Reynolds number

Re𝑇 = (𝑢rms𝐿𝑇 )Re, and turbulent Weber number We𝑇 = (𝑢2
rms𝐿𝑇 )We. 𝑁𝐼 is the number of (resolved)

entrainment events recorded and 𝑎max is the radius of the largest entrained bubble observed.

are on the order of the characteristic length scale 𝐿𝑇 = 𝑢3
rms/𝜀, i.e., ℓ ≲ 𝐿𝑇 . This implies a

maximum entrained bubble size

𝑎max/𝐿𝑇 ∝ constant . (6.19)

Second, our mechanism shows an inter-scale energy transfer, where the energy to form a
bubble comes from a different scale of turbulence. In terms of wave number, the largest scales
of turbulence are 𝜅min ∼ 2𝜋/𝐿𝑇 . By (6.11), this gives 𝑎max ∝ g𝜀−2/3𝐿4/3

𝑇 . Rearranging,

𝑎max/𝐿𝑇 ∝ Fr−2
𝑇 . (6.20)

Which of these two conditions is more restrictive will depend on Fr2
𝑇 .

6.3 Quantifying entrainment by free-surface turbulence
To study entrainment by FST, we first seek a flow which isolates FST entrainment from any
other entrainment mechanism. This is obtained with the forced FST simulations used in
Chapter 4, where isotropic turbulence is continuously forced deep beneath the surface to
obtain statistically steady turbulence and bubble population at the free surface. In section 6.4
and section 6.5 we will investigate how the entrainment distribution we elucidate here applies
to more general air entraining flows.

6.3.1 Simulation setup
We use the same forced FST simulation setup described §4.3, with many results coming from
the same exact simulations. Table 6-1 provides a summary of the forced FST simulations we
use for this chapter.
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So that our results can be more easily compared to previous work (Yu et al., 2019; Gaylo
et al., 2024), in this chapter the method we use to obtain near-surface turbulence values 𝑢rms
and 𝜀 differs from Chapter 4. We perform averaging only in the water phase (where the color
function 𝑐 = 1),

⟨·⟩𝛿 ≡
⨌

· 𝑐 dx d𝑡⨌
𝑐 dx d𝑡

for 𝑧 > −𝛿 and 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇sim] . (6.21)

Previous work used 𝛿/𝐿𝑇 ≈ 0.5 to define “near-surface.” Seeking to match this definition,
we choose 𝛿 = 0.3 based on a priori estimates of 𝐿𝑇 . This averaging defines a near-surface
𝑢rms =

√︁
⟨u · u⟩𝛿/3 and a dissipation rate 𝜀 = ⟨𝝉 : ∇u⟩𝛿. Chapter 4 shows that measuring

these values at (𝑧 − 𝜂̄)/𝛿𝑠 = −0.5 is based on a more robust definition of “near-surface”;
however comparing table 6-1 and table 4-1 we see using (6.21) instead does not significantly
affect the calculated values of Fr2

𝑇 .
During the steady state portion of the simulations (𝑡 ∈ [𝑡0, 𝑡0 + 𝑇sim]), we use ELA

(Gaylo et al. 2022; see also Chapter 3) to identify and measure entrainment events. As
described in §3.2.2, by identifying the label which corresponds to the bulk air above the
free surface (the ‘sky’) at 𝑡𝑛 and tracking this air up to 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡𝑠, we obtain direct
measurement of entrainment events over the snapshot interval Δ𝑡𝑠 (see figure 3-1c). In
general, Δ𝑡𝑠 𝛺(𝑎res) ≥ 0.1 avoids spurious events (Chan et al. 2021a; Gaylo et al. 2022; see
also Chapter 3). Here we use Δ𝑡𝑠 = 0.16.

For each individual entrainment event, ELA gives us the entrained volume 𝑣, from
which we calculate the effective radius 𝑎 ≡ (3𝑣/4𝜋)1/3. To ensure the relevant physics are
resolved by the numerical grid, we only report bubbles 𝑎 > 𝑎res, where 𝑎res = 1.5Δ for
simulations where surface tension is not modeled (Yu et al. 2019; Gaylo et al. 2024, see also
Appendix G), and 𝑎res = 3.5Δ for simulations where surface tension is modeled (Yu et al.,
2020). The total number of resolved entrainment events 𝑁𝐼 as well as the largest single
entrained bubble 𝑎max are shown in table 6-1. For the Fr2 = 0.3 run, to obtain a sufficient
number of resolve entrainment events, we increase 𝑇sim from 128 (used in Chapter 4) to 256.

6.3.2 Entrainment size distribution, 𝐼 (𝑎)
From each simulation, we have a list of all entrainment events and the associated bubble
radius. To obtain the entrainment size distribution, we first bin the entrainment events by
radius. Starting with

√
𝑁𝐼 bins evenly spaced over log(𝑎), we identify the bin with the

smallest number of events and split it between the two neighboring bins, combining three
bins into two. This is done iteratively until there are at least 15 events per bin. Normalizing
by the width of each bin, 𝑇sim, and 𝐴𝐹𝑆 = 4𝜋2 gives 𝐼 (𝑎)/𝐴𝐹𝑆.

Figure 6-3 shows the entrainment size distribution for simulations without surface tension
(see table 6-1). We first perform regression to obtain 𝛼 and 𝐶𝐼 . Because (6.6) is based on
the assumption of isotropic near-surface turbulence, we initially consider the results from
only the three strong FST (Fr2

𝑇 ≥ 0.1) simulations. Least-squares regression in log-log
space (after binning, 𝑛 = 226 data points) gives 95% confidence intervals 𝛼 ∈ [5.6, 6.1]
and 𝐶𝐼 ∈ [2.65, 3.87]. The mechanistic model we derive in §6.2.2 gives 𝛼 = 6 consistent
with the regression, and if we fix 𝛼 = 6, the regression gives the 95% confidence interval
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Figure 6-3: Entrainment size distribution in forced FST (a) as measured; and (b) normalized by Fr6
𝑇 for

different turbulent Froude number Fr2
𝑇 = 𝜀/𝑢rmsg. In (b), (– – –) shows (6.6) with𝛼 = 6 and𝐶𝐼 = 3.62

(𝑅2 = 0.990 excluding Fr2
𝑇 = 0.03). Recall 𝑎∗ = 𝑎 𝜀 𝑢−3

rms and [𝐼 (𝑎)/𝐴𝐹𝑆]∗ = [𝐼 (𝑎)/𝐴𝐹𝑆] 𝑢11
rms 𝜀

−4.

120



Fr2
𝑇 We𝑇 𝑢rms 𝜀 𝐿𝑇 𝑎res 𝑎𝐻 𝑎max

m/s W/kg m mm mm mm

0.12 36 0.234 0.282 0.046 4.2 4.5 13.1
0.13 25 0.220 0.291 0.037 3.0 4.4 8.4
0.18 5.2 0.159 0.276 0.015 2.1 4.5 9.0

Table 6-2: Dimensional values for forced FST simulations including surface tension. 𝑎res is the
smallest bubble resolved by the grid. The Hinze scale 𝑎𝐻 is calculated using (5.1) with We𝐻 = 4.7
(Martínez-Bazán et al., 1999a).

𝐶𝐼 = 3.62 ± 0.10. Figure 6-3b shows the collapse of the entrainment size distribution when
normalized by Fr6

𝑇 for all but the lowest Fr2
𝑇 = 0.03, where the turbulence deviates furthest

from isotropy. Even including Fr2
𝑇 = 0.06 < 0.1 where turbulence is weakly anisotropic, our

model shows a very strong agreement (𝑅2 = 0.990) with the numerical results. The strong
observed correlation with DNS confirms that (6.5) describes the scaling of FST entrainment
for large bubbles (𝑎 ≫ 𝑎𝑐) where surface tension is negligible. These results also show that
𝛼 = 6, so, consistent with (6.18) derived from our mechanistic model, we have

𝐼 (𝑎)/𝐴𝐹𝑆 = 𝐶𝐼 g−3 𝜀7/3 (2𝑎)−14/3 for 𝑎 ≫ 𝑎𝑐 , (6.22)

where 𝐶𝐼 ≈ 3.62 for this limiting case of negligible surface tension.
We see that (6.22) applies up to bubbles as large as 𝑎max/𝐿𝑇 ≈ 0.3, above which there

is no entrainment (see Table 6-1). This constant 𝑎max/𝐿𝑇 is what we expect from (6.19),
suggesting that interaction with a similar sized eddy is the cause of the limit on the largest
entrained bubble size in the Fr2

𝑇 regime of these simulations. It is not a surprise that (6.19)
is the limit rather than (6.20), as 1 ≪ Fr−2

𝑇 for all simulations.

6.3.3 Effect of weak surface tension
So far, we have considered the limiting case of negligible surface tension. We now consider
the effects of finite surface tension on FST entrainment. The turbulent Weber number,

We𝑇 ≡
𝑢5

rms
𝜀(𝜎/𝜌𝑤) . (6.23)

characterizes the strength of near-surface turbulence relative to surface tension. Holding
Fr2
𝑇 ≈ 0.11 constant (strong FST), we perform DNS of 3 different We𝑇 ≫ 1. While the

computational limits of DNS prevent us from directly matching viscosity, for each We𝑇
we can match 𝜎 = 72 mN/m, 𝜌𝑤 = 1024 kg/m3, and g = 9.81 m/s2 for air-water on Earth,
which we can use to dimensionalize our results (see Table 6-2). As it is independent of
turbulence levels, the capillary scale is 𝑎𝑐 = 1.3 mm for all simulations.

As discussed in Chapter 5, it is well known that surface tension prevents fragmentation of
bubbles smaller than the Hinze scale (Hinze, 1955), defined by (5.1). For bubble populations
dominated by fragmentation, this causes a change in the power-law slope of 𝑁 (𝑎) at 𝑎𝐻
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Figure 6-4: Entrainment size distribution (per unit-free surface area) for different We𝑇 . In each,
(– – –) shows the fit to (6.22) with the corresponding value of 𝐶𝐼 and the Hinze scale 𝑎𝐻 is indicated.
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Figure 6-5: Value of 𝐶𝐼 obtained through regression as a function of We𝑇 , with error bars indicating
the 95% confidence intervals. (——) shows the empirical fit, (6.24).

(Deane & Stokes, 2002). For these simulations 𝑎𝐻 ≈ 4.4mm. Figure 6-4 shows the
obtained entrainment size distributions, and we highlight that for the large bubbles we study
(𝑎 > 𝑎𝑐 = 1.3mm), there is no departure from the 𝐼 (𝑎) ∝ 𝑎−14/3 power law given by (6.22),
including around 𝑎𝐻 . It is not surprising that the Hinze scale is not relevant to large bubble
entrainment; the Hinze scale comes from the relationship between surface tension and
turbulence, where large bubble entrainment is driven by the relationship between gravity
and turbulence.

Except for the case with the strongest surface tension (b.iii) where surface tension
suppresses 𝐿𝑇 , we also see that 𝑎max ≈ 0.3𝐿𝑇 consistent with the negligible surface tension
results in §6.3.2. Rather than changes in the shape of 𝐼 (𝑎), we find that the effect of
surface tension on large-bubble entrainment is to decrease the magnitude of 𝐼 (𝑎) through 𝐶𝐼 .
Consistent with 𝐶𝐼 (We𝑇 →∞) = 3.62 from §6.3.2, we use the 𝐶𝐼 from these simulations to
obtain the empirical fit

𝐶𝐼 (We𝑇 ) = 3.62 − 𝐴
1 + (︁

We𝑇,cr/We𝑇
)︁4 + 𝐴 , (6.24)

where We𝑇,cr = 34 and 𝐴 = 0.69, shown in figure 6-5. Our results show that any effects of
surface tension on the entrainment of large bubbles become negligible for We𝑇 > We𝑇,cr,
which is reflected in the denominator of (6.24).
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In theory the mechanistic model in §6.2.2 could be extended to include surface tension
effects. While this could provide a mechanistic explanation for (6.24), it is not trivial. The
first challenge that arises is that the linearized relationship between pressure fluctuations and
surface elevation is now 𝑝 ∼ (𝜌𝑤g + 𝜎𝜅2) 𝜂. This makes the relationship between 𝜂 and
𝜅 in (6.9) non-monotonic. The result is that the inter-scale energy transfer becomes more
complicated, as one scale of turbulence can lead to the creation of bubbles at two different
scales.

6.4 Comparison to air entraining free-surface shear flow
In section 6.3 we considered entrainment in a flow where the only entrainment mechanism
present is FST. For general air entraining flows, FST is often present (Brocchini & Peregrine,
2001a) so we expect the FST entrainment mechanism to play a role in the total entrainment;
however, other entrainment mechanisms may also be relevant. The question then is how
significant FST entrainment is to the total entrainment. If FST entrainment is dominant, we
expect 𝐼 (𝑎) to follow the scaling (6.22) we develop. In this section, as an illustration of a
more general air entraining flow, we consider a canonical free-surface shear flow, which also
serves as a model for ship wakes (Shen et al., 1999; Yu et al., 2019).

The canonical free-surface shear flow we consider is that generated by the initial shear
profile,

𝑢(𝑧, 𝑡 = 0)/𝑈 = 1 − 0.9988 sech(0.88137 𝑧/𝐿) , (6.25)

characterized by the shear velocity 𝑈 and shear length 𝐿. At sufficient Reynolds number
Re = 𝑈𝐿𝜌𝑤/𝜇𝑤 a small, random initial perturbation causes the shear profile to generate
turbulence (Shen et al., 1999). Yu et al. (2019, 2020) show that for Froude number squared,
Fr2 = 𝑈2/𝐿g, greater than a critical Fr2

𝑐𝑟 ≈ 5 the turbulence leads to bubble entrainment.
There has also been extensive DNS characterizing this FST at low Fr2 (Shen et al., 1999,
2000), where it has been shown that the shear instability leads to surface waves propagating
in the direction of𝑈 (Dimas & Triantafyllou, 1994; Longuet-Higgins, 1998). In Appendix F
we extend the linear stability analysis by Longuet-Higgins (1998) to include finite depth
effects. For our simulations this linear analysis shows that wavenumbers 𝑘𝐿 ∈ [0.67, 1.23]
are unstable, and analysis of the wave spectrum confirms these long waves are present even
at the large Fr2 we consider. We highlight these long waves as they represent an alternative
mechanism for air entrainment, and the presence of these non-isotropic waves also must
have some effect on the near-surface turbulence.

6.4.1 Direct numerical simulation of free-surface shear flow
For DNS of free-surface shear flow we follow the same setup as Yu et al. (2019, 2020).
We set 𝑈 and 𝐿 to unity, which is equivalent to using 𝑈 and 𝐿 to nondimensionalize
all values in the simulation (i.e., to go from (2.1b) to (2.5)). We set the domain size to
(2𝜋/0.6)2 × 6, where initially 𝑧 ∈ [−4, 0] is water and 𝑧 ∈ [0, 2] is air. The horizontal
domain size 2𝜋/0.6 ≈ 10.472 ensures that the longest unstable wave number from the
shear instability is captured (Shen et al., 1999). This gives an initial free surface area
𝐴𝐹𝑆 = 10.4722. We set Re = 1000 and We = ∞ (surface tension not modeled) and study a
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Fr2 𝑁sim 𝑢rms 𝜀 × 104 𝐿𝑇 Fr2
𝑇 Re𝑇 𝑁𝐼 𝑎max/𝐿𝑇

5 10 0.065 5.1 0.54 0.04 36 358 0.28
8 8 0.066 5.7 0.51 0.07 34 1344 0.40
10 6 0.067 5.8 0.52 0.09 35 1848 0.41
15 6 0.069 5.5 0.61 0.12 42 4214 0.46
20 6 0.074 5.4 0.74 0.15 55 5877 0.33

Table 6-3: List of free-surface shear flow simulations used for entrainment measurements. All
simulations are performed with We = ∞ (surface tension not modeled). 𝑁sim is the number of
ensemble simulations. Turbulence properties 𝑢rms and 𝜀 are measured using (6.21) during 𝑡 ∈ [40, 70].
The characteristic length scale 𝐿𝑇 = 𝑢3

rms/𝜀 is used to calculate the near-surface turbulent Froude
number Fr2

𝑇 = (𝑢2
rms/𝐿𝑇 )Fr2, turbulent Reynolds number Re𝑇 = (𝑢rms𝐿𝑇 )Re. 𝑁𝐼 is the number of

(resolved) entrainment events recorded and 𝑎max is the radius of the largest entrained bubble observed.
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Figure 6-6: Ensemble average (a) turbulent dissipation rate and (b) turbulent kinetic energy in the
near-surface region for: ——, Fr2

𝑇 = 0.04; ——, Fr2
𝑇 = 0.07; ——, Fr2

𝑇 = 0.09; ——, Fr2
𝑇 = 0.12;

——, Fr2
𝑇 = 0.15. (- - - -) indicate 𝑡 ∈ [40, 70] over which we perform a temporal average to obtain

the values in table 6-3.

range of Fr2 ≥ Fr2
𝑐𝑟 (see table 6-3). Yu et al. (2019) perform a grid convergence study to

show a grid 3842 × 256 is sufficient for DNS of this flow, giving a grid size Δ ≈ 0.027. We
include an additional grid convergence study in Appendix G to confirm that this grid size
sufficiently resolves entrainment (and degassing). As in section 6.3, only resolved bubbles
(radius larger than 𝑎res = 1.5Δ) are reported. To obtain sufficient entrainment statistics, for
each Fr2 studied (see table 6-3), we repeat the simulation with different realizations of the
random initial perturbation to obtain ensemble statistics. The rendering in figure 1-2 comes
from a simulation of Fr2 = 15 at time 𝑡 = 60, with the shear velocity going from left to right.

We highlight that, unlike the forced FST in section 6.3, this is an unsteady flow. The
initial shear profile generates turbulence which then reaches the surface; however, because
there is no further injection of energy, the turbulence slowly decays when dissipation becomes
stronger than the shear turbulence production. Figure 6-6 shows the evolution of ensemble-
averaged turbulent dissipation rate ⟨𝜀⟩𝛿 and turbulent kinetic energy ⟨𝑘⟩𝛿 = 1

2 ⟨u · u⟩𝛿, using
the water phase average (6.21), where 𝛿 = 0.2 captures the near-surface region for this flow
(Yu et al., 2019). We observe a quasi-steady period 𝑡 ∈ [40, 70] over which we perform a
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temporal average to obtain the turbulence values 𝜀 and 𝑢rms =
√︁

2⟨𝑘⟩𝛿/3 used to characterize
near-surface turbulence (see values reported in table 6-3). For each Fr2 studied we perform at
least 6 simulations to obtain at least 103 resolved entrainment events during this quasi-steady
period for all but the smallest Fr2 (close to Fr2

𝑐𝑟).
For ELA, we use a snapshot interval Δ𝑡𝑠 = 0.4. This corresponds to Δ𝑡𝑠 ≈ 0.1𝛺(𝑎res)−1,

which avoids spurious events (Chan et al. 2021a; Gaylo et al. 2022; see also Chapter 3). We
also use Δ𝑡𝑠 = 0.8 and 1.6 and find the shapes of the entrainment size distribution 𝐼 (𝑎) (and
the degassing size distribution 𝐷 (𝑎) addressed in Chapter 7) are independent to this range
of Δ𝑡𝑠.

6.4.2 Results
Using the same method described in §6.3.2, we bin the entrainment events identified by
ELA and calculate the entrainment size distribution (per unit free-surface area) 𝐼 (𝑎)/𝐴𝐹𝑆.
Figure 6-7 shows the results, before and after scaling by (6.22). We see that our model does a
very good job of predicting the measured 𝐼 (𝑎) (in log-log space, 𝑅2 = 0.891), without even
the need to adjust 𝐶𝐼 = 3.62. Similar to §6.3.2, we find 𝑎max/𝐿𝑇 ≈ 0.3–0.4 (see table 6-3).

While the fit here (𝑅2 = 0.891) may not be quite as perfect as for the forced FST
simulations (𝑅2 = 0.990), this is still a very strong agreement with (6.22). For comparison,
Gaylo et al. (2024, Figure 4b) tried to scale these same results with Fr2

𝑇 predicted by Yu et al.
(2020) rather than Fr6

𝑇 predicted by (6.22), and the collapse here in figure 6-7b is clearly
much better. As noted, this free-surface shear flow is much more complex than the forced
FST we first considered: turbulence is only quasi-steady, and the shear instability generates
long waves. While both could have some effect on the entrainment size distribution, the still
strong agreement with (6.22) suggests that the FST entrainment mechanism is nonetheless
the dominant entrainment mechanism for this free-surface shear flow.

6.5 Comparison to open-channel flow experiments
We now compare our FST entrainment model (6.22) to the experimental measurements by
Wei et al. (2019) in open-channel flow. The first challenge is that Wei et al. (2019) only
report the size of bubble produced by 108 entrainment events. Due to the small number of
events, we modify the binning method described in §6.3.2 to only require at least 4 events per
bin (rather than 15). While this introduced more statistical noise, we find the shape of 𝐼 (𝑎)
is still relatively clear. The second challenge is that, because some number of entrainment
events would have been obscured from view and 𝐴𝐹𝑆 was not reported, the magnitude of
𝐼 (𝑎)/𝐴𝐹𝑆 is unclear; while we can still report the shape of ∝ 𝐼 (𝑎) across radii, there is a
chance of bias in what size of entrainment events were obscured.

Figure 6-8 shows the entrainment size distribution we calculate from the entrained bubble
sizes measured by Wei et al. (2019). Many of the entrainment events they measure produce
bubbles smaller than the capillary scale (𝑎 ≲ 𝑎𝑐). Focusing on bubbles larger than the
capillary scale, it appears that the results are converging to 𝐼 (𝑎) ∝ 𝑎−14/3 in the limit 𝑎 ≫ 𝑎𝑐,
consistent with our FST entrainment model (6.22). This implies that in this flow too, FST
entrainment is the dominant entrainment mechanism.
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Figure 6-7: Entrainment size distribution in free-surface shear flow (a) as measured; and (b) normal-
ized by Fr6

𝑇 for different turbulent Froude number Fr2
𝑇 = 𝜀/𝑢rmsg. In (b), (– – –) shows our model

(6.22) with 𝐶𝐼 = 3.62 (𝑅2 = 0.891). Recall 𝑎∗ = 𝑎 𝜀 𝑢−3
rms and [𝐼 (𝑎)/𝐴𝐹𝑆]∗ = [𝐼 (𝑎)/𝐴𝐹𝑆] 𝑢11

rms 𝜀
−4.
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Figure 6-8: Entrainment size distribution calculated from the results of Wei et al. (2019) for
open-channel flow experiments. The scaling of the 𝑦-axis is arbitrary. (– – –) shows 𝐼 (𝑎) ∝ 𝑎−14/3

from (6.22).

6.6 Conclusion

In air entraining flows a variety of different mechanisms could be involved in creating the
entrainment size distribution 𝐼 (𝑎). However, a common feature of many air entraining
flows is the presence of strong turbulence beneath the free surface. In this chapter we have
specifically addressed entrainment by this strong FST and characterized the size distribution
of bubbles larger than the capillary scale 𝑎𝑐 ≈ 1.3 mm.

Applicable to strong FST (Fr2
𝑇 > 0.1) where the near-surface turbulence is nearly

isotropic (see Chapter 4), dimensional analysis in §6.2.1 shows that large-bubble FST
entrainment is governed by a single scaling parameter 𝛼 and a single scaling constant 𝐶𝐼 .
Using DNS of forced turbulence under a free surface, which isolates the FST entrainment
mechanism, we obtain that 𝛼 = 6, and 𝐶𝐼 ≈ 3.62. This gives

𝐼 (𝑎)/𝐴𝐹𝑆 = 𝐶𝐼 g−3 𝜀7/3 (2𝑎)−14/3 for 𝑎 ≫ 𝑎𝑐 , (6.22)

to describe how large-bubble entrainment scales with gravity g, the strength of turbulence
𝜀, and bubble radius 𝑎. This distribution is in near perfect agreement with the measured
distributions (𝑅2 = 0.990), even when including Fr2

𝑇 ≲ 0.1. Introducing weak surface
tension effects, we obtain (6.24) to explain how surface tension decreases 𝐶𝐼 , but we
highlight that 𝐼 (𝑎) ∝ 𝑎−14/3 from (6.22) is still true for all 𝑎 > 𝑎𝑐. In §6.2.2 we describe
the mechanism for FST entrainment, which is consistent with observations of individual
entrainment events and obtains the same g−3 (i.e., Fr6

𝑇 ) and 𝑎−14/3 scaling of 𝐼 (𝑎). Missing
from previous models (Yu et al., 2020), the very strong Froude number dependence is
explained by the Froude-dependent movement of energy from larger scales of turbulence to
smaller scales of bubble given by (6.12).

We start with studying a flow chosen to isolate entrainment by FST, but find our results
apply to more general, complex flows where other entrainment mechanisms could be present.
We perform DNS of a free-surface shear flow which models aspects of the flow behind a
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ship. Without changing any parameters in (6.22), we obtain a very strong agreement with the
measured 𝐼 (𝑎) (𝑅2 = 0.891). We also consider open-channel flow experiments by Wei et al.
(2019). While many more observations will be necessary to obtain definitive entrainment
statistics, our predictions are consistent with their results for large-bubble entrainment.

In addition to validation of our model, the agreement between 𝐼 (𝑎) observed in free-
surface shear flow and open-channel flow and our model suggests FST entrainment is the
dominant entrainment mechanism in these flows. We note that there are many air entraining
flows and some may involve different (dominant) entrainment mechanisms, notably cavity
entrapment in breaking waves (Deike et al., 2016; Chan et al., 2021c; Gao et al., 2021) or
plunging jets (Kiger & Duncan, 2012; Bertola et al., 2018). While we do not expect one
model to be able explain the features of all conceivable air entraining flows, if entrainment
by FST mechanism is a significant contributor to the total entrainment one expects to see
its features reflected in 𝐼 (𝑎). Noting the common presence of near-surface turbulence
(Brocchini & Peregrine, 2001a), this suggests that our model for FST entrainment could be
applicable broad classes of air entraining free-surface flows. In particular, the confirmed
applicability to free-surface shear flow suggests our model is relevant for modeling flows
like ship wakes.
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Chapter 7

Bubble Degassing in Free-Surface
Turbulence

In this chapter we focus on bubble degassing, the 𝐷 (𝑎) term in the population balance
equation (1.2). Using ELA (Gaylo et al. 2022; see also Chapter 3), we are able to, for the
first time, directly measure the degassing size distribution 𝐷 (𝑎) and elucidate the scaling.
After quantifying degassing, we examine the bubble size distribution 𝑁 (𝑎) predicted by
(1.2). By comparing the strength of degassing to fragmentation, we identify a class of
free-surface flows that are degassing, rather than fragmentation, dominated. We show
degassing-dominance leads to an equilibrium bubble population that is clearly distinct from
the 𝑁 (𝑎) ∝ 𝑎−10/3 equilibrium solution for fragmentation dominated bubble populations,
such as in plunging breaking waves.

Many of the key results of this chapter are summarized in “Effect of degassing on bubble
populations in air entraining free-surface turbulent flows” by Gaylo, Hendrickson & Yue
(2024). A major difference is that here we use the new model for 𝐼 (𝑎) (Gaylo & Yue
2025, see also Chapter 6) in our model of degassing-dominated bubble populations (𝑁 (𝑎) =
𝐼 (𝑎)/𝛬(𝑎)). This leads to significantly better agreement between the bubble population
predicted by our model and observed in DNS.

7.1 Introduction
A fundamental property of the bubble size distribution is the power law slope 𝛽 describing
how the distribution depends on bubble size, 𝑁 (𝑎) ∝ 𝑎𝛽. As discussed in section 1.3,
𝛽 = −10/3 is the equilibrium solution for air entraining flows which are dominated by
fragmentation (Garrett et al., 2000; Gaylo et al., 2021). Studying plunging breaking waves,
Deane & Stokes (2002) observe 𝛽 = −10/3 for super-Hinze bubbles (𝑎 > 𝑎𝐻 , where 𝑎𝐻 is
given by (5.1)) during the air entraining period (referred to by them as the acoustically active
period) and conclude that fragmentation and entrainment are the dominant mechanisms
during this period. Many have since reported 𝛽(𝑎 > 𝑎𝐻) ≈ −10/3 during the air entraining
period of plunging breaking waves (Deike, 2022).

After the air entraining period, when the total volume of air begins to decrease, Deane
& Stokes (2002) observe steepening of the bubble size distribution (𝛽 < −10/3), which
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they attribute to degassing and dissolution becoming relevant, in the absence of entrainment
and fragmentation. They refer to this period as the quiescent period. Previous work on
degassing in the context of breaking waves focuses on this quiescent period, seeking to
explain how degassing evolves a bubble population after entrainment and fragmentation
have already established it (e.g., Callaghan et al., 2013; Deike et al., 2016). What has not
been addressed is the effect of degassing during the air entraining period, when degassing
acts to balance entrainment. The wide agreement on 𝛽(𝑎 > 𝑎𝐻) ≈ −10/3 suggests that this
effect is negligible compared to fragmentation for plunging breaking waves; however, in this
work we will show that for air entraining FST, degassing is in fact the dominant balance to
entrainment during the air entraining period.

Here we evaluate the effect of degassing in FST. In contrast to breaking waves where
the energy to create bubbles comes from a (downward) mean flow, in this flow the energy
comes directly from the underlying turbulence. In the absence of a mean downward flow, we
theorize that degassing will be stronger relative to other entrainment-balancing mechanisms,
such as fragmentation, and our results confirm degassing is dominant. In section 7.2 we
start by reviewing the population balance equation (PBE) and deriving quantities to measure
degassing dominance. We then derive the equilibrium solution to the PBE for degassing
dominated bubble populations in air entraining flow. Using a simple model of degassing and
the entrainment size distribution from Chapter 6, we obtain the power-law slope 𝛽 for this
equilibrium solution.

In section 7.3 we use the same DNS of canonical free-surface shear flow (Shen et al.,
1999; Yu et al., 2019) as in Chapter 6, and ELA (Gaylo et al. 2022; see also Chapter 3)
directly obtains degassing statistics. Studying large Weber numbers, where fragmentation is
strongest, we find that degassing is dominant over fragmentation, independent of Fr2

𝑇 . ELA
measurements of the degassing rate confirm the accuracy of our simple model of degassing.
Finally, measurements of 𝑁 (𝑎) (independent of ELA) agree with our predicted equilibrium
solution for degassing dominated bubble populations. In section 7.4 we discuss how this
result elucidates how degassing-dominated bubble populations (expected in air entraining
FST) scale with Froude number.

7.2 Modeling degassing-dominated bubble populations
Using the PBE, we seek a model for 𝛽 in degassing-dominated air entraining flows, as
well as formal definitions of “air entraining” and “degassing-dominated.” We start with a
brief review of the PBE introduced in Chapter 1. Recall that, because fragmentation and
degassing of an individual bubble is independent of other bubbles, the distributions are
linearly dependent on 𝑁 (𝑎) and we can write

𝑆−𝑓 (𝑎) = 𝛺(𝑎)𝑁 (𝑎) , (1.5)

and
𝐷 (𝑎) = 𝛬(𝑎)𝑁 (𝑎) . (1.6)

This defines the fragmentation rate 𝛺(𝑎), the focus of Chapter 5, and the degassing rate
𝛬(𝑎), a focus of this chapter. With these two relationships, the PBE (1.3) (which neglects
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dissolution and coalescence) can be split into positive and negative terms:

𝜕𝑁/𝜕𝑡 (𝑎) = [︁
𝐼 (𝑎) + 𝑆+𝑓 (𝑎)

]︁ − [︁
𝛬(𝑎) + 𝛺(𝑎)]︁𝑁 (𝑎) . (1.7)

Weighting the PBE by 𝑎3 and integrating over all bubble sizes, we obtain the evolution of
the total entrained volume

d𝑉/d𝑡 = 𝑄 𝐼 −𝑄𝐷 . (1.8)

Because it only moves volume between bubble sizes, fragmentation does not contribute
d𝑉/d𝑡.

To classify flows as air entraining, we consider the ratio between degassing flux and
entrainment flux,

D ≡ 𝑄𝐷/𝑄 𝐼 . (7.1)

We define an air entraining flow to be one where D ∈ [0, 1], meaning the amount of
entrained air is increasing (d𝑉/d𝑡 > 0) or at equilibrium (d𝑉/d𝑡 = 0). This excludes flows
with negligible entrainment (D ≫ 1), such as the quiescent period of breaking waves.
For breaking waves during the air entraining period, Deane & Stokes (2002) show that
entrainment and fragmentation are the primary mechanisms, implying that degassing is
negligible (D ≪ 1). Our interest is air entraining flows where degassing is important
(D ≲ 1).

7.2.1 Defining degassing-dominated bubble populations

We define a degassing-dominated flow to be one where degassing, rather than fragmentation,
dominates the evolution of the bubble population. As a simple measure, we could look at the
negative terms in (1.7) and see that if 𝛬(𝑎) > 𝛺(𝑎) a bubble is more likely to degases than
fragment. Formally we need to also consider the positive term 𝑆+𝑓 (𝑎), but it turns out that
𝛬(𝑎)/𝛺(𝑎) is still an appropriate measure of degassing versus fragmentation dominance.

To understand the effect of 𝑆+𝑓 (𝑎), we take the same approach as in §1.3.1 and assume
identical fragmentation, where all bubbles fragment into exactly 𝑚 identically sized daughter
bubbles.1 This gives

𝑆+𝑓 (𝑎) ∼ 𝑚4/3𝛺(𝑚1/3𝑎)𝑁 (𝑚1/3𝑎) . (7.2)

While this may not be the most realistic model fragmentation, in Chapter 5 we showed that
unrealistic fragmentation models (𝐶 𝑓 = 1 here) can capture the behavior of fragmentation
cascades if 𝑚 is chosen such that a realistic value of 𝐶𝜏 is obtained in (5.30). Using 𝐶𝜏 ≈ 9
and 𝐶𝛺 ≈ 1.4 (Gaylo et al. 2023, see also Chapter 5), (5.30) gives 𝑚 ≈ 1.45 is needed for
(7.2) to realistically capture the fragmentation cascade.

Assuming 𝑎 ≫ 𝑎𝐻 such that we can use the power-law relationship (1.11), we have
𝛺(𝑚1/3𝑎) = 𝑚−2/9𝛺(𝑎). If we assume a power-law for the bubble size distribution,
𝑁 (𝑎) ∝ 𝑎𝛽, we obtain

𝑆+𝑓 (𝑎) ∼ 𝑆−𝑓 (𝑎) 𝑚10/9+𝛽/3 . (7.3)

1In (5.2) this means setting 𝛽(𝑎; 𝑎′) = 𝛿(𝑎′ − 𝑚−1/3𝑎), where 𝛿 is the Dirac delta function.
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This allows us to rewrite (1.7) as

𝜕𝑁/𝜕𝑡 (𝑎) ∼ 𝐼 (𝑎) − [︁
𝛬(𝑎) + 𝛺(𝑎) (1 − 𝑚10/9+𝛽/3)]︁𝑁 (𝑎) , (7.4)

Which makes it clear that the ratio

Effect of Degassing
Effect of Fragmentation

∼ 𝛬(𝑎)
𝛺(𝑎)

(︄
1|︁|︁1 − 𝑚10/9+𝛽/3|︁|︁

)︄
. (7.5)

Using 𝑚 ≈ 1.45 as an example, we have |1 − 𝑚10/9+𝛽/3 | < 1 for any 𝛽 < 2.26. As 𝛽 is
typically negative (more smaller bubbles than larger bubbles), we can be confident that
𝛬(𝑎)/𝛺(𝑎) > 1 means that the effects of degassing are larger than fragmentation. If 𝛽 is
known, a tighter bound could be determined. In summary, if 𝛬(𝑎)/𝛺(𝑎) ≫ 1 we can be
sure that the effect of fragmentation on 𝑁 (𝑎) is small compared to the effect degassing,
defining a degassing dominated population.

7.2.2 Degassing-dominated population balance equation

For degassing-dominated bubble populations (𝛬(𝑎)/𝛺(𝑎) ≫ 1) we can remove the negligible
fragmentation term from the PBE, giving

𝜕𝑁/𝜕𝑡 (𝑎) = 𝐼 (𝑎) − 𝛬(𝑎)𝑁 (𝑎) . (7.6)

This is significantly more simple than (1.7) because, by removing the integral coming
from 𝑆+𝑓 (𝑎), we have removed any dependence of 𝑁 (𝑎) on 𝑁 (𝑎′) for any 𝑎′ ≠ 𝑎. With no
dependence between bubble sizes, we could write (7.6) as a set of independent first-order
linear ordinary differential equations,[︁

d𝑁𝑖/d𝑡 = 𝐼𝑖 − 𝛬𝑖𝑁 ∀ bubble radii 𝑎𝑖
]︁

. (7.7)

which are easy to solve for a given initial condition, entrainment rate 𝐼𝑖 (which could depend
on time) and degassing rate 𝛬𝑖 (which could also depend on time).

Equilibrium and non-equilibrium regimes

A useful way to interpret (7.6) comes from rearranging it:

𝐼 (𝑎) = 𝛬(𝑎)𝑁 (𝑎) + 𝜕𝑁/𝜕𝑡 (𝑎) . (7.8)

We see that bubble entrainment is balanced by two terms: degassing, 𝛬(𝑎)𝑁 (𝑎), and/or an
increase in the bubble size distribution, 𝜕𝑁/𝜕𝑡 (𝑎). With a little more rearranging, the ratio
of the first to the second term defines

𝛾(𝑎) ≡ 𝛬(𝑎)𝑁 (𝑎)
𝐼 (𝑎) − 𝛬(𝑎)𝑁 (𝑎) . (7.9)
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For 𝛾(𝑎) ≪ 1, entrainment is balanced by a corresponding increase in the bubble size
distribution, 𝜕𝑁/𝜕𝑡 (𝑎) ≈ 𝐼 (𝑎). Suppose we start from 𝑁 (𝑎) = 0 at 𝑡 = 0. 𝛾(𝑎) ≪ 1
suggests a non-equilibrium regime of linear growth 𝑁 (𝑎) ≈ 𝑡 𝐼 (𝑎). Plugging this back into
(7.9), we get

𝛾(𝑎) ∼ 𝛬(𝑎)𝑡
1 − 𝛬(𝑎)𝑡 for 𝛾(𝑎) ≪ 1 . (7.10)

We see that 𝛾(𝑎) ≪ 1 can only be true for timescales 𝑡 ≪ 1/𝛬(𝑎). Beyond this, we
enter a regime 𝛾(𝑎) ≫ 1 where entrainment is primally balanced by degassing and the
bubble population does not change significantly (𝜕𝑁/𝜕𝑡 (𝑎) ∼ 0). For a given radius, the
characteristic time to reach this equilibrium regime is 1/𝛬(𝑎).

While we stress that the evolution of each individual radius is independent for a degassing-
dominated bubble population, it can still be useful to define measures of equilibrium/non-
equilibrium which describe the entire bubble population. If we weigh the numerator
and denominator of (7.9) by bubble volume 𝑎3 and integrate separately, we obtain 𝛤 ≡
𝑄𝐷/(𝑄 𝐼 −𝑄𝐷). This can be related to D from (7.1):

𝛤 =
D

1 − D . (7.11)

This 𝛤 gives a measure of 𝛾(𝑎) for all radii of a bubble population. We expect the
non-equilibrium regime for 𝛤 ≪ 1 and the equilibrium regime for 𝛤 ≫ 1.

Power-law slope of the equilibrium solution, 𝛽

Here, our primary interest is the equilibrium solution to (7.6). As demonstrated, we expect
this solution if 𝐼 (𝑎) is constant or changes over timescales much longer than 1/𝛬(𝑎). Setting
𝜕𝑁/𝜕𝑡 (𝑎) = 0, the balance between entrainment and degassing in (7.6) gives

𝑁 (𝑎) ≈ 𝐼 (𝑎)/𝛬(𝑎) . (7.12)

Chapter 6 shows that 𝐼 (𝑎) ∝ 𝑎−14/3 for 𝑎 ≫ 𝑎𝑐, where 𝑎𝑐 is the capillary scale.2 If we
assume that degassing follows some power law 𝛬(𝑎) ∝ 𝑎𝛼, the power law slope of 𝑁 (𝑎) in
degassing-dominated bubble populations is

𝛽 = −14/3 − 𝛼 for 𝑎 ≫ 𝑎𝑐 . (7.13)

Next, we determine the value of 𝛼.

7.2.3 Power-law scaling of degassing in free-surface turbulence
To predict 𝛼, we derive a characteristic bubble depth 𝐿𝛬 and bubble rise velocity𝑈𝛬 such
that the degassing rate is 𝛬(𝑎) ∝ 𝑈𝛬/𝐿𝛬. We start with the characteristic depth 𝐿𝛬, which
we described the depth of a recently entrained bubble. For the energy argument in Chapter 6,
we consider an initial depth 𝑑 ∼ 2𝑎 (see figure 6-1). This initial depth 𝑑 was used to relate

2Gaylo et al. (2024) use 𝐼 (𝑎) ∝ 𝑎−10/3 predicted by Yu et al. (2020), which we now know is wrong (Gaylo
& Yue 2025; see also Chapter 6).
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the potential energy of the surface deformation to the initial potential energy of the entrained
bubble. What we did not consider in §6.2.2 is that turbulence could then advect the bubble
further downward.

As confirmed in Chapter 4, near-surface turbulence is isotropic for Fr2
𝑇 > 0.1, allowing

application of the Kolmogorov energy cascade. In the inertial sub range, an eddy of size
ℓ has a velocity 𝑢ℓ ∼ 𝜀1/3ℓ1/3 and is coherent over 𝑡ℓ ∼ 𝜀−1/3ℓ2/3. A bubble of radius 𝑎
has an added mass 𝑚 ∼ 𝜌𝑤𝑎3 and (at large Reynolds numbers) feels a force from the eddy
𝐹 ∼ 𝜌𝑤𝑎2𝑢2

ℓ . Assuming this force is greater than buoyancy (𝐹 ≫ 𝜌𝑤g(4𝜋/3)𝑎3) the bubble
accelerates downward with 𝑤̇ ∼ 𝑢2

ℓ/𝑎. This moves the bubble to a depth 𝑧 ∼ 𝑡ℓ2𝑤̇ = ℓ2/𝑎.
The eddies with the most energy are ℓ ∼ 𝐿𝑇 = 𝑢rms

3𝜀−1, and we assume these are primarily
responsible for pushing bubbles downwards, giving a model

𝐿𝛬 = 𝐶𝐿 𝑢rms
6𝜀−2𝑎−1 , (7.14)

where 𝐶𝐿 is an unknown constant of proportionality.

For characteristic velocity𝑈𝛬, either buoyant rise or turbulent advection can be relevant.
For buoyant rise, we consider𝑊𝑇 , the terminal rise velocity of a bubble in quiescent flow.
This is characterized by a Reynolds number,

Re𝑊 =
(2𝑎)𝑊𝑇

𝜈𝑤
. (7.15)

Park et al. (2017) summarize the three regimes of bubble terminal rise velocity:

𝑊𝑇 (𝑎) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
12 g 𝜈−1

𝑤 (2𝑎)2 Re𝑊 < 1
0.144 g5/6 𝜈2/3

𝑤 (2𝑎)3/2 1 < Re𝑊 < 100
0.711 g1/2 (2𝑎)1/2 Re𝑊 > 150, and Bo > 40

(7.16)

(Davies & Taylor, 1950; Mendelson, 1967; Wallis, 1974; Clift et al., 2013). We consider
bubbles in the inertial regime 1 < Re𝑊 < 100, like those in our DNS, and bubbles in the
spherical-cap regime Re𝑊 > 150, which we expect for larger physical-scale free-surface flows
where the Reynolds number is much larger than captured by our DNS (e.g., Hendrickson
et al., 2019). While our focus here is bubbles 𝑎 ≫ 𝑎𝑐 where surface tension effects are
negligible, Park et al. (2017) provide the full equation for the spherical-cap regime which
includes the effect of surface tension.

In addition to buoyant rise, the movement of bubbles can be affected by turbulent advection,
which we model as𝑈𝛬 = 𝐶𝑈 𝑢rms, where 𝐶𝑈 is an unknown constant of proportionality. For
small bubbles, we expect their movement to be dominated by turbulent advection. For large
bubbles, we expect their movement to be dominated by buoyant rise. Setting𝑊𝑇 = 𝐶𝑈𝑢rms
defines the transition between these two regimes, and we solve (7.16) for 𝑎 to define the
critical radius

𝑎𝛬 ≡
{︄

1.82 (𝐶𝑈 𝑢rms)2/3 𝜈4/9
𝑤 g−5/9 DNS-scale Re𝑊

0.99 (𝐶𝑈 𝑢rms)2 g−1 Physical Re𝑊
. (7.17)
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Thus, we define a simple model for the two regimes of the characteristic rise velocity,

𝑈𝛬 =

{︄
𝐶𝑈 𝑢rms 𝑎 < 𝑎𝛬

𝑊𝑇 (𝑎) 𝑎 > 𝑎𝛬
. (7.18)

Although more advanced models consider the interaction between buoyancy and turbulence
(relevant near 𝑎 = 𝑎𝛬) (e.g., Salibindla et al., 2020; Ruth et al., 2021), we find this simple
two-regime model is sufficient to explain the power law scaling of degassing.

Using our models for 𝐿𝛬 and𝑈𝛬 with 𝛬(𝑎) = 𝑈𝛬/𝐿𝛬, we obtain

𝛬(𝑎) = 𝛬0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑎/𝑎𝛬) 𝑎 < 𝑎𝛬

(𝑎/𝑎𝛬)5/2 𝑎 > 𝑎𝛬, DNS-scale Re𝑊
(𝑎/𝑎𝛬)3/2 𝑎 > 𝑎𝛬, Physical Re𝑊

, (7.19a)

where

𝛬0 =
𝐶𝑈
𝐶𝐿
𝑢rms

−5𝜀2𝑎𝛬 =

{︄
1.82 𝐶𝐿−1𝐶𝑈

5/3 𝑢rms
−13/3 𝜀2 𝜈4/9

𝑤 g−5/9 DNS-scale Re𝑊
0.99 𝐶𝐿−1𝐶𝑈

3 𝑢rms
−3 𝜀2 g−1 Physical Re𝑊

.

(7.19b)
This gives the power-law slope 𝛼 for degassing in the turbulence-driven regime (𝑎 < 𝑎𝛬)
and buoyancy-driven regime (𝑎 > 𝑎𝛬),

𝛼 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 𝑎 < 𝑎𝛬

5/2 𝑎 > 𝑎𝛬, DNS-scale Re𝑊
3/2 𝑎 > 𝑎𝛬, Physical Re𝑊

, (7.20)

Using (7.13) for degassing dominated populations, we obtain

𝛽 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−17/3 (= −5.66̄) 𝑎 < 𝑎𝛬

−43/6 (= −7.16̄) 𝑎 > 𝑎𝛬, DNS-scale Re𝑊
−37/6 (= −6.16̄) 𝑎 > 𝑎𝛬, Physical Re𝑊

. (7.21)

In all these regimes, we predict that degassing-dominated bubble populations have a 𝛽
significantly more negative (more smaller bubbles, fewer larger bubbles) than 𝛽 = −10/3 (=
−3.3̄) for fragmentation-dominated bubble populations.

7.3 Quantifying degassing in air entraining free-surface
shear flow

To quantify the effects of degassing on the bubble population, we consider the same canonical
free-surface shear flow we used to quantify the effects of entrainment in Chapter 6 (see
§6.4 for details). Figure 7-1 lists the simulations performed. Note that these are the same
simulations as in Chapter 6 (see table 6-3). In these simulations, we use ELA (Gaylo et al.
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Fr2 𝑁sim 𝑢rms 𝜀 × 104 𝐿𝑇 Fr2
𝑇 Re𝑇 𝑁𝐷 D

5 10 0.065 5.1 0.54 0.04 36 231 0.60 ± 0.09
8 8 0.066 5.7 0.51 0.07 34 976 0.72 ± 0.05
10 6 0.067 5.8 0.52 0.09 35 1344 0.71 ± 0.05
15 6 0.069 5.5 0.61 0.12 42 3150 0.75 ± 0.06
20 6 0.074 5.4 0.74 0.15 55 4167 0.68 ± 0.05

Table 7-1: List of free-surface shear flow simulations used for degassing measurements. All
simulations are performed at We = ∞ (surface tension not modeled). 𝑁sim is the number of ensemble
simulations. Turbulence properties 𝑢rms and 𝜀 are measured using (6.21) during 𝑡 ∈ [40, 70]. The
characteristic length scale 𝐿𝑇 = 𝑢3

rms/𝜀 is used to calculate the near-surface turbulent Froude number
Fr2

𝑇 = (𝑢2
rms/𝐿𝑇 )Fr2, turbulent Reynolds number Re𝑇 = (𝑢rms𝐿𝑇 )Re. 𝑁𝐷 is the number of (resolved)

degassing events recorded. The 95% confidence interval is given for the average value of D from
(7.1).
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Figure 7-1: Ratio of degassing flux to entrainment flux for: ——, Fr2
𝑇 = 0.04; ——, Fr2

𝑇 = 0.07;
——, Fr2

𝑇 = 0.09; ——, Fr2
𝑇 = 0.12; ——, Fr2

𝑇 = 0.15. (- - - -) indicate 𝑡 ∈ [40, 70] over which we
perform a temporal average to obtain the values in table 7-1. For clarity, we apply a top-hat filter
(width 8 in time) denoted ˜︁· .
2022; see also Chapter 3) to identify and measure degassing events over the snapshot interval
Δ𝑡𝑠 (see figure 3-1c). As in §6.4, we use a snapshot interval Δ𝑡𝑠 = 0.16 and only report
bubbles 𝑎 > 𝑎res, where 𝑎res = 1.5Δ.

7.3.1 Volume flux ratio, D
We start by consideringD from (7.1), the ration of degassing volume flux𝑄𝐷 to entrainment
volume flux 𝑄 𝐼 . Figure 7-1 shows instantaneous D over the evolution of the free-surface
shear flow. First, we note that the evolution of D is consistent across the range of Fr2

𝑇 .
Recall in section 7.2.2 we showed the characteristic timescale for the evolution of 𝛾(𝑎) is
∝ 1/𝛬(𝑎). For 𝑎 < 𝑎𝛬, (7.19) gives 𝛬(𝑎) ∝ 𝑢rms

−5𝜀2𝑎, independent of g. Γ (related to D
through (7.11)) is a volume weighted average of 𝛾(𝑎) across bubble radius. This means that
if the majority of air volume is in bubbles 𝑎 < 𝑎𝛬, we expect the evolution of D to be Fr2

𝑇
independent.
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Consistent with the analysis in §7.2.2, we see Γ < 1 (D < 0.5) for a short time near the
start of entertainment (𝑡 < 30), before Γ > 1 is obtained. We focus on the period 𝑡 ∈ [40, 70]
when the turbulence is quasi-steady (see figure 6-3). Unlike D ≪ 1 seen for breaking waves
(Deane & Stokes, 2002), our free-surface shear flow shows D ≈ 0.7 (or 𝛤 ≈ 2.3) during
this air entraining period, which, as expected, is independent of Fr2

𝑇 . This D ∼ O(1) shows
that degassing is an important mechanism balancing entrainment. Next, we will prove this
flow is degassing dominated, in which case 𝛤 > 1 shows that although the turbulence and
entrainment size distribution 𝐼 (𝑎) are changing in time, those timescales are large enough
relative to 1/𝛬(𝑎) such that the bubble population is in the equilibrium regime.

7.3.2 Degassing rate, 𝛬(𝑎)
We use ELA to obtain the degassing events over 𝑡 ∈ [40, 70]. Using the same binning method
described in §6.3.2, we calculate the degassing size distribution 𝐷 (𝑎), where there are at
least 15 events per bin.3 For each bin, we then divide by the average 𝑁 (𝑎) (calculated from
75 evenly spaced samples over 𝑡 ∈ [40, 70] from each simulation) to obtain the degassing
rate 𝛬(𝑎), shown in figure 7-2. Least-squares regression in log-log space (after binning,
𝑛 = 160 data points) gives the best fit 𝐶𝑈 = 3.0 and 𝐶𝐿 = 0.219.4 Looking at figure 7-2b
we see that our model (7.19), with these two fitting parameters, shows a good agreement
(𝑅2 = 0.761) with the numerical results.

To directly quantify the power-law slope 𝛬(𝑎) ∝ 𝑎𝛼, we also perform least-square
regression to

log [𝛬(𝑎)/𝛬0] = 𝛼̂ log [𝑎/𝑎𝛬] + 𝐶 , (7.22)

for 𝑎/𝑎𝛬 < 0.8 and 𝑎/𝑎𝛬 > 1.25 separately. As discussed in section 7.2.3, our model
is designed to capture the power law far from 𝑎/𝑎𝛬 ≈ 1, where 𝐶𝑈 𝑢rms ≈ 𝑊𝑇 (𝑎). For
𝑎/𝑎𝛬 < 0.8 we obtain a 95% confidence intervals 𝛼̂ ∈ [0.82, 1.08], consistent with
𝛼(𝑎 < 𝑎𝛬) = 1 predicted by (7.20). For 𝑎/𝑎𝛬 > 1.25 we only have 16 data points, so the
range 𝛼̂ ∈ [−2.07, 2.90] is quite wide, but not inconsistent with 𝛼(𝑎 > 𝑎𝛬) = 2.5 predicted
by (7.20). Qualitatively, figure 7-2b is compatible with 𝛼(𝑎 > 𝑎𝛬) = 2.5.

7.3.3 Degassing dominance
We now examine the strength of degassing relative to fragmentation. Figure 7-3 shows that
𝛬(𝑎)/𝛺(𝑎) > 1 for most bubble radii. Using (7.5), we can calculate the ratio of degassing
versus fragmentation including the cancellation between 𝑆+𝑓 and 𝑆−𝑓 . Based on 𝑚 ≈ 1.45
chosen to match 𝐶𝜏 and 𝛽 = −17/3 from (7.21), (7.5) becomes

Effect of Degassing
Effect of Fragmentation

∼ 𝛬(𝑎)
𝛺(𝑎)

(︃
1

0.251

)︃
. (7.23)

In figure 7-3 we see 𝛬(𝑎)/𝛺(𝑎) > 0.251 for all bubble radii. These results show that
degassing is not only important in free-surface shear flow, but dominant over fragmentation.

3Gaylo et al. (2024) use a different binning method, leading to only slightly different plots.
495% confidence intervals: 𝐶𝑈 ∈ [2.6, 3.3] and 𝐶𝐿 ∈ [0.197, 0.244]
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Figure 7-2: Degassing rate in free-surface shear flow (a) as measured and (b) compared to our
model (7.19) for different turbulent Froude number Fr2

𝑇 = 𝜀/𝑢rmsg. In (a), 𝑎∗ = 𝑎 𝜀 𝑢−3
rms and

[𝛬(𝑎)]∗ = [𝛬(𝑎)] 𝜀−1 𝑢2
rms. In (b), (– – –) shows our model (7.19) with 𝐶𝑈 = 3.0 and 𝐶𝐿 = 0.219

(𝑅2 = 0.761). Recall 𝑎∗ = 𝑎 𝜀 𝑢−3
rms.
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Figure 7-3: Degassing rate in free-surface shear flow compared to the fragmentation rate for different
turbulent Froude number Fr2

𝑇 = 𝜀/𝑢rmsg. 𝛺(𝑎) is given by (5.5) with 𝐶𝛺 = 0.42 (Martínez-Bazán
et al., 1999a). (——) shows 𝛬(𝑎)/𝛺(𝑎) = 1 and (– – –) shows 𝛬(𝑎)/𝛺(𝑎) = 0.251.

7.4 Equilibrium bubble size distributions in degassing-
dominated flow

In the previous section, we first confirmed that the degassing size distribution 𝛬(𝑎) follows
(7.19) and elucidated the scaling coefficients, and second confirmed that degassing is
dominant over fragmentation. As discussed in section 7.2.2, degassing dominance means
that we expect the equilibrium bubble size distribution 𝑁 (𝑎) to follow (7.12). In Chapter 6
we obtain (6.22) to describe 𝐼 (𝑎) (per mean free surface area 𝐴𝐹𝑆) for super-capillary scale
bubbles in FST. With (7.19) obtained here to describe 𝛬(𝑎) in FST, we can now solve (7.12)
for the equilibrium bubble size distribution in degassing-dominated bubble populations,

𝑁 (𝑎) = 𝑁0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑎/𝑎𝛬)−17/3 𝑎 < 𝑎𝛬

(𝑎/𝑎𝛬)−43/6 𝑎 > 𝑎𝛬, DNS-scale Re𝑊
(𝑎/𝑎𝛬)−37/6 𝑎 > 𝑎𝛬, Physical Re𝑊

, (7.24a)

where
𝑁0 = 𝐼 (𝑎𝛬)/𝛬0 = 𝐴𝐹𝑆

[︁
𝐶𝐿 𝐶𝐼 𝐶𝑈

−1 2−14/3]︁ g−3𝑢5
rms𝜀

−2𝑎−17/3
𝛬 , (7.24b)

𝐼 (𝑎𝛬) comes from (6.22), and 𝛬0 comes from (7.19). This applies to large bubbles (𝑎 ≫ 𝑎𝑐)
where (6.22) is valid.

7.4.1 Measurements in free-surface shear flow
Figure 7-4a shows the bubble size distribution we measure from the free-surface shear
flow simulations, nondimensionalized by the near-surface turbulence characteristic scale
𝐿𝑇 = 𝑢3

rms/𝜀. The bubble size distribution is much steeper than 𝛽 = −10/3 we would
expect for fragmentation-dominated bubble populations. The clear difference between the
simulation results and 𝛽 = −10/3 also excludes the prediction 𝑁 (𝑎)/𝐴𝐹𝑆 ∝ g−1𝜀2/3𝑎−10/3

from Yu et al. (2020), which misses the inter-scale energy transfer associated with entrainment
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Figure 7-4: Bubble size distribution in free-surface shear flow compared to (a) the model by Yu
et al. (2020) and (b) our model (7.24) for different turbulent Froude number Fr2

𝑇 = 𝜀/𝑢rmsg. In (a),
(– – –) shows 𝑁 (𝑎)/𝐴𝐹𝑆 ∝ g−1𝜀2/3𝑎−10/3. In (b), (– – –) shows (7.24) with 𝐶𝐼 = 3.62, 𝐶𝑈 = 3.0
and 𝐶𝐿 = 0.219 (𝑅2 = 0.849), and for the smallest bubbles (· · · · ·) shows 𝑁 (𝑎) ∝ 𝑎−4 from (1.17)
with 𝛾 = −14/3. Recall 𝑎∗ = 𝑎/𝐿𝑇 and [𝑁 (𝑎)/𝐴𝐹𝑆]∗ = [𝑁 (𝑎)/𝐴𝐹𝑆] 𝐿3

𝑇 , where 𝐿𝑇 = 𝑢3
rms/𝜀.
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(see Chapter 6) and does not consider degassing.
Direct measurement of degassing in the previous section showed this flow is degassing

dominated. In figure 7-4b we compare our measured 𝑁 (𝑎) to (7.24) we predict as the
equilibrium solution to degassing-dominated bubble populations. Without introducing
any additional fitting parameters or modifying previous ones (𝐶𝐼 = 3.62 obtained by
direct measurement of 𝐼 (𝑎) in Chapter 6; 𝐶𝑈 = 3.0 and 𝐶𝐿 = 0.219 obtained by direct
measurement of 𝛬(𝑎) in this chapter), we see a strong agreement (𝑅2 = 0.849). We note
that, for small bubbles where fragmentation is expected to have some effect (see figure 7-3),
we do see some evidence for the beginning of a shift toward 𝑁 (𝑎) ∝ 𝑎−4 predicted by
(1.17) for fragmentation-dominated bubble populations with 𝐼 (𝑎) ∝ 𝑎−14/3 (Gaylo et al.,
2021). Generally, comparing figure 7-4a and figure 7-4b, we conclude that, as expected
based on the ELA measurements of 𝛬(𝑎)/𝛺(𝑎), 𝑁 (𝑎) is much better described by the
degassing-dominated model.

7.4.2 Scaling with Froude number

We have derived the equilibrium solution (7.24) for bubble populations in air entraining flow
which dominated by degassing rather than fragmentation and observed this distribution in
DNS of canonical free-surface shear flow, which has been used to model ship wakes. We
now explore the scaling of this bubble size distribution with turbulent Froude number Fr2

𝑇 .
We start by expanding (7.24). Using (6.22), (7.17), and (7.19) we obtain

𝑁 (𝑎)/𝐴𝐹𝑆 = 2𝐶𝐿𝐶𝐼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐶−1
𝑈 g−3𝑢5

rms𝜀
1/3 (2𝑎)−17/3 𝑎 < 𝑎𝛬

(3.64)3/2 g−23/6𝜈2/3
𝑤 𝑢6

rms𝜀
1/3 (2𝑎)−43/6 𝑎 > 𝑎𝛬, DNS-scale Re𝑊

(1.98)1/2 g−7/2𝑢6
rms𝜀

1/3 (2𝑎)−37/6 𝑎 > 𝑎𝛬, Physical Re𝑊
.

(7.25)
which shows explicitly how the predicted degassing-dominated bubble size distribution
depends on bubble radius 𝑎, gravity g, turbulence strength 𝜀 and 𝑢rms, and (for DNS-scale
moderate Re𝑊 ) the viscosity of water 𝜈𝑤. Next, we nondimensionalize (7.25) using the
characteristic length scale 𝐿𝑇 = 𝑢3

rms/𝜀, [𝑁 (𝑎)/𝐴𝐹𝑆]∗ = [𝑁 (𝑎)/𝐴𝐹𝑆]𝐿3
𝑇 , and 𝑎∗ = 𝑎/𝐿𝑇 .

Focusing on the large Re𝑊 we expect in large-scale flows like that behind a ship, the
non-dimensional value of 𝑎𝛬 is

𝑎∗𝛬 = 𝑎𝛬/𝐿𝑇 = 0.99𝐶2
𝑈Fr2

𝑇 . (7.26)

Thus, nondimensionalizing (7.25) for the case of large Re𝑊 gives

[𝑁 (𝑎)/𝐴𝐹𝑆]∗ = 2𝐶𝐿𝐶𝐼

{︄
𝐶−1
𝑈 Fr6

𝑇 (2𝑎∗)−17/3 𝑎∗ < 0.99𝐶2
𝑈Fr2

𝑇

(1.98)1/2Fr7
𝑇 (2𝑎∗)−37/6 𝑎∗ > 0.99𝐶2

𝑈Fr2
𝑇

. (7.27)

For the constants we can use 𝐶𝐼 = 3.62 obtained by direct measurement of 𝐼 (𝑎) in Chapter 6
and 𝐶𝑈 = 3.0 and 𝐶𝐿 = 0.219 obtained by direct measurement of 𝛬(𝑎) in section 7.3. This
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gives

[𝑁 (𝑎)/𝐴𝐹𝑆]∗ =
{︄

0.537 Fr6
𝑇 (2𝑎∗)−17/3 𝑎∗ < 17.2 Fr2

𝑇

2.23 Fr7
𝑇 (2𝑎∗)−37/6 𝑎∗ > 17.2 Fr2

𝑇

. (7.28)

We see that the number of bubbles scales with Fr6
𝑇 for bubbles in the turbulence-driven

degassing regime and Fr7
𝑇 for bubbles in the buoyancy-drive degassing regime. Compared to,

for example, Yu et al. (2020) who predicted [𝑁 (𝑎)/𝐴𝐹𝑆]∗ ∝ Fr2
𝑇 (𝑎∗)−10/3 for all 𝑎 ≫ 𝑎𝑐,

we see that, in addition to the bubble size distribution being much steeper, it is significantly
more sensitive to turbulent Froude number.

7.5 Conclusion
We study degassing in air entraining flows, where the total volume of bubbles is increasing.
Through incorporating degassing into the PBE, our goal is to characterize the bubble size
distribution, 𝑁 (𝑎), including its power-law slope 𝛽. In air entraining flow, entrainment is
clearly important, while the other mechanism(s) that balances entrainment determines 𝛽. For
plunging breaking waves at large We, fragmentation is the dominant balancing mechanism,
giving 𝛽 = −10/3 (Garrett et al. 2000; Deane & Stokes 2002, see also §1.3). In contrast,
we find that for FST, specifically a canonical free-surface shear flow (Shen et al., 1999; Yu
et al., 2019), degassing is the dominant balancing mechanism.

From the PBE, we derive metrics to determine the importance of degassing in air entrain-
ing flows. The ratio of degassing flux to entrainment flux, D = 𝑄𝐷/𝑄 𝐼 , broadly quantifies
the relevance of degassing. More directly, the ratio of degassing rate to fragmentation rate,
𝛬(𝑎)/𝛺(𝑎), determines whether degassing or fragmentation is dominant (with (7.5) giving
the critical value of 𝛬(𝑎)/𝛺(𝑎) where the two are equal). For FST, DNS givesD ≈ 0.7 over
a broad range of air entraining Fr2, consistent with degassing being a relevant mechanism;
and 𝛬(𝑎)/𝛺(𝑎) > O(1), indicating that degassing is dominant over fragmentation.

From the PBE, we show that at equilibrium degassing-dominated bubble populations
depend on entrainment 𝐼 (𝑎) and degassing rate 𝛬(𝑎),

𝑁 (𝑎) ≈ 𝐼 (𝑎)/𝛬(𝑎) . (7.12)

Using a simple model of degassing, we derive (7.19) which gives the degassing rate 𝛬(𝑎)
in two regimes, separated by a critical radius 𝑎𝛬 (7.17). We find a turbulence-driven
regime where 𝛬(𝑎) ∝ 𝑎 and a buoyancy-driven regime where 𝛬(𝑎) ∝ 𝑎5/2 for moderate,
DNS-scale bubble Reynolds number Re𝑏. DNS measurements of 𝛬(𝑎) confirm this split
power-law scaling and obtain the two scaling coefficients. Based on this 𝛬(𝑎) as well as
𝐼 (𝑎) from Chapter 6, (7.12) gives that that degassing-dominated 𝑁 (𝑎) follow a split power
law 𝛽(𝑎 < 𝑎𝛬) = −5.6̄ and 𝛽(𝑎 > 𝑎𝛬) = −7.16̄ (for moderate Re𝑏), which is confirmed
independently by DNS. We note that this model can be extended theoretically to large
physical-scale Re𝑏, where the buoyancy-driven regime becomes 𝛬(𝑎) ∝ 𝑎3/2 leading to
𝛽 = −6.16̄.

We have identified that it is possible for an air entraining free-surface flow to be degassing
dominated, even at large We when fragmentation is strongest. With ELA we have direct
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access to measure the physical mechanism and can prove degassing dominance through the
metrics D and 𝛬(𝑎)/𝛺(𝑎). Where such access is not possible, degassing or fragmentation
dominance can be inferred from the size distribution power-law slope(s) 𝛽. For plunging
breaking waves, the wide agreement on 𝛽 = −10/3 (Deike, 2022) suggests that such flows
are generally fragmentation dominated. The free-surface shear flow we consider is one
definitive example of an air entraining flow which is degassing rather than fragmentation
dominated. For another possible example, Hendrickson et al. (2019) reported 𝛽 ∈ [−8,−5]
in the converging-corner-wave regions of the flow behind a dry transom stern, indicative
of the degassing-dominated flows considered here. Because fragmentation-dominated and
degassing-dominated bubble populations give such distinct equilibrium bubble populations,
determining if a flow is fragmentation- or degassing-dominated is critical to understanding
the bubble population.
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Chapter 8

Conclusion

Turbulent, air entraining bubbly flows are a feature of many free-surface flows in nature and
engineering, and predicting the size distribution of bubbles is critical to modeling these
flows. The framework for describing the evolution of the bubble size distribution, 𝑁 (𝑎), is
the population balance equation (PBE), which has terms describing each of the individual
bubble evolution mechanisms: fragmentation, entrainment, and degassing. We study these
evolution mechanisms in free-surface turbulence (FST), a ubiquitous feature of air entraining
free surfaces. Broadly, the two challenges to predicting 𝑁 (𝑎) are modeling the near surface
turbulence, and modeling the bubble evolution mechanisms, which depend on the turbulence.
Using DNS of FST, this thesis contributes to the fundamental understanding of both near
surface turbulence and bubble evolution mechanisms. This understanding also informs the
development of models for air entraining FST. We make progress towards a RANS model
for the surface layer and are able to predict a new degassing-dominated regime, which is
confirmed by DNS and distinct from the fragmentation-dominated regime often assumed for
bubbly flow.

We close with a summary of the contributions of this thesis and discussion of the future
research work these contributions point towards.

8.1 Thesis contributions

I Numerical methods for free-surface bubbly flows

Development of ELA, enabling direct measurement of bubble evolution mecha-
nisms in FST (Chapter 3; Gaylo et al. 2022)

A previous barrier to understanding the individual bubble evolution mechanisms near air
entraining free surfaces was the difficulty in measuring the mechanisms directly. For
example, a previous dataset on entrainment had only 108 entrainment events (Wei et al.,
2019). Because every mechanism affects 𝑁 (𝑎), attempts to infer an individual mechanism
from only the behavior of 𝑁 (𝑎) requires assumptions about all other mechanisms. Incorrect
assumptions have led to incorrect conclusions about evolution mechanisms (Yu et al., 2020).
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Bubble tracking enables direct measurement of the evolution mechanisms, but previous
Lagrangian methods (Chan et al., 2021a; Gao et al., 2021; Basak et al., 2026) struggle
near air entraining free surfaces, where bubble evolution is complex. Instead, we develop
Eulerian label advection (ELA) which uses the flow field available from DNS to track the
movement of air. This gives robust bubble tracking, independent of the complexity of the
bubble evolution. Numerically, ELA is built upon cVOF (Weymouth & Yue, 2010) in a way
that maintains volume conservation and minimizes computational cost.

ELA enables us to, for the first time, directly measure individual bubble evolution
mechanisms near air entraining free surfaces in DNS. This allows us to obtain huge datasets
for each evolution mechanism. For example, analysis of entrainment in Chapter 6 is based on
60, 000 entrainment events. These datasets allow detailed characterization of the statistics of
each mechanism, particularly the scaling with bubble size and Froude number.

II Describing turbulence near air entraining free surfaces

Identification of the critical Froude number to obtain strong FST (Chapter 4; Gaylo
& Yue 2025)

Yu et al. (2019) identify that for sufficient Froude number near-surface turbulence becomes
isotropic, the defining feature of strong FST. In this work we determine a robust definition
of a near-surface turbulent Froude number (squared), Fr2

𝑇 = 𝜀/𝑢rmsg, based on turbulence
statistics 𝜀 and 𝑢rms measured at the bottom of the surface layer. DNS measurements
of turbulence isotropy across a range of Fr2

𝑇 show the transition to strong FST occurs at
Fr2
𝑇 ≈ 0.1. For Fr2

𝑇 > 0.1, near-surface turbulence is nearly perfectly isotropic (isotropy
parameter 𝐽 ≈ 0.95), independent of any further change in Fr2

𝑇 .

Characterizing the surface layer in strong FST (Chapter 4)

Brocchini & Peregrine (2001b) define the surface layer as the region where air and water are
highly mixed and note the difficulty in modeling it. We develop a definition of the surface
layer thickness 𝛿𝑠 based on the vertical derivative of the average fraction of water, 𝛾, at the
mean free-surface height 𝜂̄,

𝛿𝑠 ≡ 6√
2𝜋

(︄
d𝛾
d𝑧

|︁|︁|︁|︁
𝑧=𝜂̄

)︄−1

. (4.6)

Unlike previous definitions (Brocchini & Peregrine, 2001b; Hendrickson & Yue, 2019), this
does not depend on the tail behavior of the 𝛾 distribution. The surface layer thickness defines
a nondimensional depth, 𝑧∗ ≡ (𝑧 − 𝜂̄)/𝛿𝑠. Scaling by 𝑧∗ collapses the distribution of 𝛾 across
a wide range of Fr2

𝑇 . The distribution follows logistic tail behavior, rather than Gaussian.
Relevant turbulence statistics within the surface layer (𝑧∗ ∈ [−0.5, 0.5]) also collapse with
𝑧∗ when appropriately nondimensionalized by 𝑢rms and 𝜀 measured at the bottom of the
surface layer (𝑧∗ = −0.5). Particularly relevant to turbulence modeling, we show that there
is no direct effect of the free surface on turbulence beneath the surface layer (𝑧∗ < −0.5),
especially for strong FST.
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III Quantifying individual bubble evolution mechanisms in the PBE
Fragmentation – Determining when the memoryless assumption is valid (Chapter 5;
Gaylo et al. 2023)

A central assumption for modeling fragmentation in the PBE is that the probability a bubble
fragments over a given time interval is independent of previous intervals. Physically, we do
not expect this memoryless assumption to be valid for short intervals immediately after the
bubble was formed by previous fragmentation, as the bubble would still be highly distorted.
We elucidate the relaxation timescale 𝜏𝑟 = 𝐶𝑟 𝜀−1/3𝑎2/3, which gives the minimum time
interval where the observed statistics of bubble fragmentation are reasonably consistent with
the memoryless assumption. This informs selection of measurement intervals to ensure
the observed fragmentation statistics are applicable to the PBE. We also find that, for all
super-Hinze scale bubbles, 𝜏𝑟 ≪ 𝜏ℓ, the typical lifetime of a bubble, showing that the
memoryless assumption in the PBE is valid.

Fragmentation – A new bound on daughter-size distributions (Chapter 5; Gaylo
et al. 2023)

Fragmentation models need to describe the statistics of the daughter bubbles produced
by fragmentation. These are 𝑚̄, the number of daughters; and 𝑓 ∗𝑉 (𝑣∗), the probability
distribution function describing the volume ratio of daughter to parent, 𝑣∗. There is a great
variety of models for these two statistics. Previously, Martínez-Bazán et al. (2010) showed
that volume conservation constrains the relationship between the 𝑛 = 1 moment of 𝑓 ∗𝑉 (𝑣∗)
and 𝑚̄, as expressed in (5.4).

In fragmentation cascades, the evolution of the bubble population is characterized by the
timescale 𝜏𝑐, which gives the average time needed for air starting in the largest bubble to go
through the cascade and reach the Hinze scale (Deike et al., 2016; Qi et al., 2020; Gaylo
et al., 2021). We determine the empirical value of 𝜏𝑐 from DNS, and also derive an analytic
expression for 𝜏𝑐 in terms of 𝑓 ∗𝑉 (𝑣∗) and 𝑚̄. The relationship between empirical value of 𝜏𝑐
and the fragmentations statistics provides a new constraint on the relationship between the
𝑛 = 11/9 moment of 𝑓 ∗𝑉 (𝑣∗) and 𝑚̄,

𝑚̄(𝑎′)
∫ 1

0
𝑣∗11/9 𝑓 ∗𝑉 (𝑣∗; 𝑎′) d𝑣∗ = 1 − (︁

𝐶𝜏𝐶𝛺,∞
)︁−1 . (5.41)

Our estimations of 𝐶𝜏 and 𝐶𝛺,∞ from DNS give 0.92 for the right side at large We.

Entrainment – Scaling of the large-bubble entrainment size distribution in FST
(Chapter 6; Gaylo & Yue 2025)

We investigate the scaling of entrainment by FST. For strong FST where turbulence is
isotropic (Fr2

𝑇 > 0.1), dimensional analysis shows that, for bubbles larger than the capillary
scale (𝑎𝑐 ≈ 1.3mm for air-water on Earth), the entrainment size distribution is governed by
a single scaling parameter 𝛼 and a single scaling constant 𝐶𝐼 . We develop a mechanistic
model of FST entrainment based on the observation that the minimum radius of curvature
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of the proceeding surface disturbance is similar to the radius of the resulting bubble. This
implies an inter-scale energy transfer that was missed by previous entrainment models (Yu
et al., 2020) and gives 𝛼 = −3. This corresponds to an entrainment size distribution (per
unit free surface area)

𝐼 (𝑎)/𝐴𝐹𝑆 = 𝐶𝐼 g−3 𝜀7/3 (2𝑎)−14/3 for 𝑎 ≫ 𝑎𝑐 . (6.22)

We perform DNS across a wide range of Fr2
𝑇 of a flow selected to isolate FST entrainment

and a more realistic free-surface shear flow. ELA directly measures 𝐼 (𝑎) and gives𝐶𝐼 ≈ 3.62.
Excluding Fr2

𝑇 ≪ 0.1, both flows agree well with our model (𝑅2 = 0.990 and 0.891). We
also find evidence of 𝐼 (𝑎) ∝ 𝑎−14/3 in previous experimental observations of open-channel
flow (Wei et al., 2019). The ubiquity of FST suggests that our model for FST entrainment
can be important to broad classes of air entraining flows.

Degassing – Scaling of the degassing rate in FST (Chapter 7; Gaylo et al. 2024)

To determine the scaling of degassing, we develop a simple model with two regimes separated
by a critical radius 𝑎𝛬. For 𝑎 < 𝑎𝛬 degassing is driven by turbulence, giving a characteristic
rise velocity𝑈𝛬 ∝ 𝑢rms. For 𝑎 > 𝑎𝛬 degassing is driven by buoyancy, and we set𝑈𝛬 equal
to the terminal rise velocity in quiescent flow, which depends on bubble Reynolds number
Re𝑊 . By a mechanistic argument we determine 𝐿𝛬, the characteristic depth a bubble is
entrained to. Through 𝛬(𝑎) = 𝑈𝛬/𝐿𝛬, this model gives the degassing rate

𝛬(𝑎) = 𝛬0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑎/𝑎𝛬) 𝑎 < 𝑎𝛬

(𝑎/𝑎𝛬)5/2 𝑎 > 𝑎𝛬, DNS-scale Re𝑊
(𝑎/𝑎𝛬)3/2 𝑎 > 𝑎𝛬, Physical Re𝑊

. (7.19a)

From DNS of free-surface shear flow at a wide range of Fr2
𝑇 , ELA measures 𝛬(𝑎) and we

determine the two scaling coefficients in our model. Despite the simplicity of our degassing
model, we see a good agreement with the numerical results (𝑅2 = 0.761).

IV Advancements in modeling free-surface bubbly flow

Progress towards a model of near-surface turbulence for use in RANS (Chapter 4)

We observe that the direct effects of the free surface are restricted to the surface layer and
that the surface layer is well characterized by (only) the turbulence properties at its bottom.
This shows that, rather than attempting to model 𝑘 and 𝜀 within the surface layer, a RANS
simulation could simply apply an appropriate boundary condition at the bottom edge of the
surface layer. Towards implementation of this approach, we characterize the two quantities
necessary for such a boundary condition in 𝑘-𝜀 RANS: the surface layer thickness,

𝛿𝑠 = 𝐶𝛿 𝑢
2
rmsg−1 ; (4.35)
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and the energy flux into the surface layer,

𝑊/𝜌𝑤 = (𝐶𝑊/𝐶𝛿) 𝜀 𝛿𝑠 . (4.36)

DNS measurements give 𝐶𝛿 ≈ 11.1 and 𝐶𝑊 ≈ 4.6. 𝐶𝑊/𝐶𝛿 ∼ 1/2 is consistent with the
observation that the turbulent dissipation rate (per unit mass) is roughly constant within the
surface layer.

A distinct equilibrium solution for bubble populations dominated by degassing,
like in FST (Chapter 7; Gaylo et al. 2024)

For bubble populations dominated by fragmentation, 𝑁 (𝑎) ∝ 𝑎−10/3 is the equilibrium
solution (Garrett et al., 2000). This power law is often observed in plunging breaking waves
for super Hinze-scale bubbles (Deane & Stokes, 2002; Deike et al., 2016). From DNS
of free-surface shear flow at a wide range or Fr2

𝑇 , we compare the degassing rate 𝛬(𝑎) to
fragmentation rate 𝛺(𝑎). We identify that 𝛬(𝑎) ≫ 𝛺(𝑎), meaning degassing is dominant,
rather than fragmentation. For bubble populations dominated by degassing, we show the
equilibrium solution is

𝑁 (𝑎) ≈ 𝐼 (𝑎)/𝛬(𝑎) . (7.12)

With the degassing rate 𝛬(𝑎) and the entrainment size distribution 𝐼 (𝑎) we obtained based
on ELA, this allows us to predict the bubble size distribution. Without any additional fitting
parameters, our prediction agrees very well with the 𝑁 (𝑎) we measure (independent of ELA)
in DNS (𝑅2 = 0.849).

For large-scale flows (very large Reynolds numbers), degassing-dominance predicts a
bubble size distribution (nondimensionalized by the turbulence length scale 𝐿𝑇 = 𝑢3

rms/𝜀)

[𝑁 (𝑎)/𝐴𝐹𝑆]∗ =
{︄

0.537 Fr6
𝑇 (2𝑎∗)−17/3 𝑎∗ < 17.2 Fr2

𝑇

2.23 Fr7
𝑇 (2𝑎∗)−36/6 𝑎∗ > 17.2 Fr2

𝑇

, (7.28)

which applies to bubbles larger than the capillary scale (𝑎 ≫ 𝑎𝑐). For the scaling with
bubble radius 𝑎, we see a split distribution, and in both regimes the power-law slope is more
negative (i.e., there are fewer large bubbles) than 𝑁 (𝑎) ∝ 𝑎−10/3. We also see that the bubble
population is incredibly sensitive to Froude number; in the turbulence-driven degassing
regime 𝑁 (𝑎) scales with Fr6

𝑇 , and is even more sensitive in the buoyancy-driven degassing
regime.

As an illustration of the insight provided by this new equilibrium solution, we consider
the flow behind the transom stern of a vessel, which the canonical free-surface shear flow
models. Previous work (Yu et al., 2020) predicted that 𝑁 (𝑎) scales with Fr2

𝑇 , meaning that
when the speed of the vessel doubles, the number of bubbles increases by a factor of 4. We
show the bubble population actually scales with Fr6

𝑇 , meaning that when the speed of the
vessel doubles, the number of bubbles increases by a factor of 64.
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8.2 Future work
Implementation of the surface-layer model in RANS

Our DNS measurements of FST suggest that the effects of an air entraining free surface on
turbulence could be modeled in RANS using a boundary condition applied at the bottom
edge of the surface layer. For the forced FST setup, where turbulence levels deep beneath the
surface are prescribed and mean values are only a function of 𝑧, it would be straight forward
to solve the 𝑘-𝜀 RANS equations with our proposed boundary condition and compare the
predicted 𝑘 and 𝜀 to the DNS results in Chapter 4. For a flow which includes realistic
turbulence production, our DNS of free-surface shear flow provides a useful reference to test
a RANS model against.

Elucidating the scaling of small-bubble entrainment by FST

Our entrainment model predicts 𝐼 (𝑎) ∝ 𝑎−14/3 for bubbles larger than the capillary scale.
This scaling cannot apply to arbitrarily small bubbles, as that would imply an infinite
entrainment flux, 𝑄 𝐼 = (4𝜋/3)

∫
𝐼 (𝑎)𝑎3 d𝑎. To predict the entrainment flux, the scaling of

the entrainment size distribution for bubbles smaller than the capillary scale is necessary.
In theory the mechanistic model developed in Chapter 6 could be extended to include
surface tension; however, the relationship between turbulence and bubble scales becomes
multi-valued, suggesting a more complicated inter-scale energy exchange.

Describing the effects of coalescence

For small and moderate void fractions with significant space between bubbles, the effect
of coalescence on the bubble population is negligible. However, our results suggest the
quantity of bubbles scales with Fr6

𝑇 , meaning the void fraction will increase significantly with
only slightly larger Froude numbers. ELA can quantify coalescence; however, coalescence
involves thin films on scales not resolved by our DNS. Our DNS solver would require explicit
models for coalescence, otherwise the VOF scheme implicitly coalesces any bubbles with
interfaces within a grid cell.

Investigating non-equilibrium regimes

For degassing-dominated bubble populations, we have elucidated the equilibrium (𝜕𝑁/𝜕𝑡 =
0) solution 𝑁 (𝑎) = 𝐼 (𝑎)/𝛬(𝑎). The natural question then is how the bubble population
evolves in non-equilibrium. As noted in Chapter 7 the degassing-dominated PBE is a set of
independent ordinary differential equations. For the simple case where 𝑁 (𝑎) = 0 at 𝑡 < 0
and 𝐼 (𝑎) and 𝛬(𝑎) are steady for 𝑡 > 0,

𝑁 (𝑎; 𝑡) = [𝐼 (𝑎)/𝛬(𝑎)] (1 − e−𝛬(𝑎)𝑡) . (8.1)

For non-steady 𝐼 (𝑎) or 𝛬(𝑎), or non-negligible fragmentation the evolution is more complex.
The evolution of the total entrained volume, d𝑉/d𝑡 given by (1.8), is also of interest, but
requires the entrainment flux 𝑄 𝐼 , which requires the scaling of small-bubble entrainment.
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Appendix A

Stability of the Viscous Diffusion Term
with Arithmetic-Mean Viscosity

For single-phase flows the stability of the viscous diffusion term leads to a timestep restriction

Δ𝑡 <
1
6

Re min [Δ𝑥𝑑]2 (𝜌/𝜇) (2.11)

Tryggvason et al. (2011, §3.1). For multi-phase flows, this appendix addresses the appropriate
value to use for 𝜌/𝜇.

The appropriate value for 𝜌/𝜇 is closely tied to the methods used to interpolate density 𝜌
and viscosity 𝜇 from the pressure and VOF grid where they are explicitly defined by (2.15),
to calculations on the velocity grid. In this section we will use the 𝑢-grid as an example, and
by swamping indices the equations can be trivially modified to apply to the 𝑣- and 𝑤-grids.
The DNS solver used in this thesis uses

𝜌𝑖+1/2 𝑗 𝑘 =
𝜌𝑖 𝑗 𝑘 + 𝜌𝑖+1 𝑗 𝑘

2
(A.1)

for density and the same for viscosity,

𝜇𝑖+1/2 𝑗 𝑘 =
𝜇𝑖 𝑗 𝑘 + 𝜇𝑖+1 𝑗 𝑘

2
. (A.2)

However, the viscous diffusion term requires additional interpolation,

𝜇𝑖+1/2 𝑗+1/2 𝑘 =
𝜇𝑖+1/2 𝑗 𝑘 + 𝜇𝑖+1/2 𝑗+1 𝑘

2
(A.3)

(and similar for 𝜇𝑖+1/2 𝑗 𝑘+1/2). This expression is equivalent to the arithmetic mean (2.17)
discussed in section 2.1.3. The extra interpolation required for viscosity compared to density
is the reason that simply choosing the minimum of 𝜌𝑤/𝜇𝑤 and 𝜌𝑎/𝜇𝑎 for 𝜌/𝜇 in (2.11) is
insufficient to guarantee stability.
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A.1 Spatial discretization of the viscous diffusion term

We first review the calculation of the viscous term, as described by Tryggvason et al. (2011,
§3.1). For the 𝑢 velocity, the viscous diffusion term in (2.5) is

𝜕

𝜕𝑡
𝑢𝑖+1/2 𝑗 𝑘 = · · · +

1
𝜌𝑖+1/2 𝑗 𝑘

(𝐷𝑥)𝑖+1/2, 𝑗 ,𝑘 + . . . (A.4)

For a constant grid Δ = Δ𝑥 = Δ𝑦 = Δ𝑧, the viscous term is given in terms of the stress matrix

(𝐷𝑥)𝑖+1/2 𝑗 𝑘 =
𝑇𝑥𝑥𝑖+1 𝑗 𝑘 − 𝑇𝑥𝑥𝑖 𝑗 𝑘

Δ

+
𝑇𝑥𝑧
𝑖+1/2 𝑗+1/2 𝑘 − 𝑇𝑥𝑧𝑖+1/2 𝑗−1/2 𝑘

Δ

+
𝑇
𝑥𝑦
𝑖+1/2 𝑗 𝑘+1/2 − 𝑇

𝑥𝑦
𝑖+1/2 𝑗 𝑘−1/2

Δ
. (A.5)

The stress matrix is calculated

𝑇𝑥𝑥𝑖 𝑗 𝑘 =
1
Re

2𝜇𝑖 𝑗 𝑘
𝑢𝑖+1/2 𝑗 𝑘 − 𝑢𝑖−1/2 𝑗 𝑘

Δ
, (A.6a)

𝑇𝑥𝑧
𝑖+1/2 𝑗+1/2 𝑘 =

1
Re
𝜇𝑖+1/2 𝑗+1/2 𝑘

(︂𝑢𝑖+1/2 𝑗+1 𝑘 − 𝑢𝑖+1/2 𝑗 𝑘
Δ

+ 𝑤𝑖+1 𝑗+1/2 𝑘 − 𝑤𝑖 𝑗+1/2 𝑘
Δ

)︂
, (A.6b)

𝑇
𝑥𝑦
𝑖+1/2 𝑗 𝑘+1/2 =

1
Re
𝜇𝑖+1/2 𝑗 𝑘+1/2

(︂𝑢𝑖+1/2 𝑗 𝑘+1 − 𝑢𝑖+1/2 𝑗 𝑘
Δ

+ 𝑣𝑖+1 𝑗 𝑘+1/2 − 𝑣𝑖 𝑗 𝑘+1/2
Δ

)︂
, (A.6c)

and similar for 𝑇𝑥𝑦
𝑖+1/2 𝑗 𝑘+1/2.

A.2 Linear stability analysis

Before addressing the viscous term specifically, we start with a general analysis of the
effects of the temporal discretization. We will consider the evolution of the spatially discrete
𝑢-velocity, 𝑢𝑖+1/2 𝑗 𝑘 (see figure 2-1). In continuous time but discrete space, for linear stability
analysis our interest is the value of 𝐶 in the linear term that multiplies 𝑢𝑖+1/2 𝑗 𝑘 ,

𝜕

𝜕𝑡
𝑢𝑖+1/2 𝑗 𝑘 = 𝐶 𝑢𝑖+1/2 𝑗 𝑘 + · · · . (A.7)

Applying the two-stage Runge-Kutta time discretization described in section 2.1.2,

𝑢(𝑛+1/2)
𝑖+1/2 𝑗 𝑘 = (1 + Δ𝑡𝐶) 𝑢

(𝑛)
𝑖+1/2 𝑗 𝑘 + . . . , (A.8a)

𝑢(𝑛+1)
𝑖+1/2 𝑗 𝑘 =

1
2
𝑢(𝑛)
𝑖+1/2 𝑗 𝑘 +

(︃
1
2
+ Δ𝑡

2
𝐶

)︃
𝑢(𝑛+1/2)
𝑖+1/2 𝑗 𝑘 + . . . . (A.8b)
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Combining these two steps gives

𝑢(𝑛+1)
𝑖+1/2 𝑗 𝑘 =

(︃
1 + (Δ𝑡𝐶) + 1

2
(Δ𝑡𝐶)2

)︃
𝑢(𝑛)
𝑖+1/2 𝑗 𝑘 + . . . . (A.9)

The linear stability requirement is

−2 < (Δ𝑡𝐶) + 1
2
(Δ𝑡𝐶)2 < 0 (A.10)

The lower bound is always satisfied (i.e., there are no oscillatory linear instabilities).
Expanding the upper bound,

−2 < Δ𝑡𝐶 < 0 . (A.11)

We now seek the equivalent value of 𝐶 in (A.4). Because the viscous term is linear, we
assume a solution of the form

𝑢𝑖+1/2, 𝑗 ,𝑘 = 𝑈ei(𝜅𝑥𝑖+𝜅𝑧 𝑗+𝜅𝑦𝑘) . (A.12)

This gives, for example, 𝑢𝑖+1/2, 𝑗+1,𝑘 = ei𝜅𝑧𝑢𝑖+1/2, 𝑗 ,𝑘 . We put (A.12) into (A.5) and, after a
fair bit of algebra, we obtain (A.18) shown on the next page.

The stability criteria for the viscous term can be made looser by applying continuity
(2.8a), which gives us that the velocity field is divergence free. Discretized on the staggered
grid, this gives

𝑤𝑖 𝑗+1/2 𝑘 − 𝑤𝑖 𝑗−1/2 𝑘
Δ

+ 𝑣𝑖 𝑗 𝑘+1/2 − 𝑣𝑖 𝑗 𝑘−1/2
Δ

= −𝑢𝑖+1/2 𝑗 𝑘 − 𝑢𝑖−1/2 𝑗 𝑘
Δ

. (A.13)

As shown in (A.19), this simplifies the third and fourth lines of (A.18) into a term which
partially cancels a term in the first line of (A.18). Finally, we obtain (A.20), shown on the
next page.

A.2.1 Single-phase stability criteria

To check (A.20), we start by considering the case where 𝜇 and 𝜌 are constant throughout the
domain. In this case, we expect to obtain (2.11). For constant 𝜇 and 𝜌, (A.20) simplifies to

(𝐷𝑥)𝑖+1/2 𝑗 𝑘 =
𝜇

ReΔ2

{︁
2 [cos 𝜅𝑥 − 1] + 2 [cos 𝜅𝑧 − 1] + 2

[︁
cos 𝜅𝑦 − 1

]︁}︁
𝑢𝑖+1/2, 𝑗 ,𝑘 . (A.14)

The most unstable mode is 𝜅𝑥 = 𝜅𝑧 = 𝜅𝑦 = 𝜋, which gives

(𝐷𝑥)𝑖+1/2 𝑗 𝑘 = −12
𝜇

ReΔ2𝑢𝑖+1/2 𝑗 𝑘 . (A.15)

Recalling that we also divide by 𝜌 in (A.4), we obtain

𝐶 = − 12
ReΔ2 𝜈 , (A.16)
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𝜇
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where 𝜈 ≡ 𝜇/𝜌. Putting this value of 𝐶 into (A.11) we obtain,

Δ𝑡 ≤ 1
6

ReΔ2 𝜈−1 , (A.17)

which, as expected, is equivalent to (2.11).

A.2.2 Multi-phase stability criteria

We now consider the same most unstable mode (𝜅𝑥 = 𝜅𝑧 = 𝜅𝑦 = 𝜋), but now for a multi-phase
flow where 𝜇 and 𝜌 change across cells. Grouping the terms of (𝐷𝑥)𝑖+1/2, 𝑗 ,𝑘 that multiply
𝑢𝑖+1/2, 𝑗 ,𝑘 , (A.20) becomes

(𝐷𝑥)𝑖+1/2 𝑗 𝑘 = −
1
Re

{︂
8𝜇𝑖+1/2 𝑗 𝑘+𝜇𝑖+1/2 𝑗+1 𝑘+𝜇𝑖+1/2 𝑗−1 𝑘+𝜇𝑖+1/2 𝑗 𝑘+1+𝜇𝑖+1/2 𝑗 𝑘−1

Δ2

}︂
𝑢𝑖+1/2 𝑗 𝑘+ . . . . (A.21)

To make this similar to (A.15), we can define an effective dynamic viscosity

𝜇̃𝑖+1/2 𝑗 𝑘 ≡
8𝜇𝑖+1/2 𝑗 𝑘 + 𝜇𝑖+1/2 𝑗+1 𝑘 + 𝜇𝑖+1/2 𝑗−1 𝑘 + 𝜇𝑖+1/2 𝑗 𝑘+1 + 𝜇𝑖+1/2 𝑗 𝑘−1

12
, (A.22)

and write
(𝐷𝑥)𝑖+1/2 𝑗 𝑘 = −12

𝜇̃𝑖+1/2 𝑗 𝑘
ReΔ2 𝑢𝑖+1/2 𝑗 𝑘 + . . . . (A.23)

Following the same steps as the single-phase criteria, we obtain

Δ𝑡 ≤ 1
6

ReΔ2 𝜈̃−1 , (A.24)

where the effective (kinematic) viscosity for the 𝑢-grid is defined

𝜈̃𝑖+1/2 𝑗 𝑘 ≡
2
3

[︃
𝜇𝑖+1/2 𝑗 𝑘
𝜌𝑖+1/2 𝑗 𝑘

]︃
+ 1

12

[︃
𝜇𝑖+1/2 𝑗+1 𝑘 + 𝜇𝑖+1/2 𝑗−1 𝑘 + 𝜇𝑖+1/2 𝑗 𝑘+1 + 𝜇𝑖+1/2 𝑗 𝑘−1

𝜌𝑖+1/2 𝑗 𝑘

]︃
.

(A.25)
Equivalent definitions for 𝜈̃𝑖 𝑗+1/2 𝑘 and 𝜈̃𝑖 𝑗 𝑘+1/2 can be obtained by swapping indices.

A.3 Bounding effective viscosity

Before seeking the maximum possible value of 𝜈̃, we illustrate that it could be larger than
the 𝜈 = 𝜇/𝜌 of either individual fluid. Consider an interface which is normal to 𝑧. The VOF
field is

𝑓𝑖 𝑗 𝑘 =

{︄
0 𝑗 ≥ 1
1 𝑗 < 1

.
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Using (2.15), we obtain (nondimensionalized) density and viscosity

𝜌𝑖 𝑗 𝑘 =

{︄
𝜆 𝑗 ≥ 1
1 𝑗 < 1

, 𝜇𝑖 𝑗 𝑘 =

{︄
𝜂 𝑗 ≥ 1
1 𝑗 < 1

.

Using (A.25) we obtain

𝜈̃𝑖+1/2 𝑗 𝑘 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(𝜂/𝜆) 𝑗 ≥ 2
11
12 (𝜂/𝜆) + 1

12 (1/𝜆) 𝑗 = 1
11
12 (1/1) + 1

12 (𝜂/1) 𝑗 = 0
(1/1) 𝑗 ≤ −1

.

For air-water (𝜆 = 0.00123, 𝜂 = 0.0159), this corresponds to 𝜈̃𝑖+1/2 𝑗 𝑘 ≈ 80 at 𝑗 = 1, much
larger than either 𝜈 = 𝜆/𝜂 ≈ 13 in air or 𝜈 = 1 in water. As discovered by Matthew Coogan
(personal communication, October 2025), DNS of a nearly quiescent air-water free surface
confirms that, if one uses 𝜈̃ ∼ 𝜆/𝜂 in (A.24) there is a numerical instability and, as expected,
the 𝑢 velocity in the first cell of air above the interface grows exponentially.

As illustrated in the example, the viscosity in 𝑗 ± 1 and 𝑘 ± 1 cells are not necessarily
related to the density in the cell at 𝑗 𝑘 . This means that in general the second term in (A.25)
can, at best, be bounded by

1
12

[︃
𝜇𝑖+1/2 𝑗−1 𝑘 + 𝜇𝑖+1/2 𝑗+1 𝑘 + 𝜇𝑖+1/2 𝑗 𝑘−1 + 𝜇𝑖+1/2 𝑗 𝑘+1

𝜌𝑖+1/2 𝑗 𝑘

]︃
≤ 1

3
max [1, 𝜂]
min [1, 𝜆] . (A.26)

For the first term, the fact that the same interpolation is used for 𝜇𝑖+1/2 𝑗 𝑘 as 𝜌𝑖+1/2 𝑗 𝑘 does
mean their quotient is bounded between the 𝜇/𝜌 of each individual fluid. In summary,
(A.25) can be bounded by

𝜈̃ ≤ 2
3

max
[︂
1,
𝜂

𝜆

]︂
+ 1

3
max [1, 𝜂]
min [1, 𝜆] . (A.27)

A.4 Implementation options
Applying (A.27) to (A.24), one obtains a timestep restriction

Δ𝑡 ≤ 1
6

ReΔ2
(︃
2
3

max
[︂
1,
𝜂

𝜆

]︂
+ 1

3
max [1, 𝜂]
min [1, 𝜆]

)︃−1
. (A.28)

For air and water where 𝜂 ≪ 1, this condition is about 20 times more restrictive compared
to (incorrectly) using 𝜈̃ ∼ 𝜂/𝜆 in (A.24). For many of the simulations in this thesis, this
would make (A.28) the most restrictive timestep criteria, more restrictive than (2.13) driven
by CVOF.

In practice, it is common to apply some smoothing to the VOF field before calculating 𝜌
and 𝜇 (e.g., Tryggvason et al., 2011, §7.1.4), which decreases the sharp changes in 𝜇 that
make such large 𝜈̃ possible. In theory one could determine how smoothing links viscosity in
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adjacent cells and derive a tighter bound on 𝜈̃ for when smoothing is used. Alternatively,
one could calculate the true maximum value of 𝜈̃ before each timestep using (A.25) (and
similar equations for 𝜈̃𝑖 𝑗+1/2 𝑘 and 𝜈̃𝑖 𝑗 𝑘+1/2), and apply the dynamic timestep restriction

Δ𝑡 ≤ 1
6

ReΔ2 (max [𝜈̃])−1 . (A.29)

For a third approach, we first note that due to smoothing of the VOF field as well as
turbulence (physically) smoothing the VOF field, in many simulations it is rare to see the
strong viscosity gradients that lead to 𝜈̃ ≫ max[1, 𝜂/𝜆]. While not guaranteed to be stable,
in practice one could use a safety factor FS and set

Δ𝑡 ≤ 1
6

ReΔ2 (FS max[1, 𝜂/𝜆])−1 . (A.30)

The simulations in this thesis use FS = 1 (i.e., no safety factor), and only rarely become
unstable. However, in general the author suggests using (A.29).
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Appendix B

Approximating Long Snapshot Intervals
using Volume Tracking Matrix
Multiplication

As introduced in §3.2.1, the volume tracking matrix (VTM) A(𝑛→𝑛+1) describes the movement
of air between bubbles with volumes v𝑛 at time 𝑡𝑛 and bubbles with volumes v𝑛+1 at time
𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡𝑠

v𝑛+1 = A(𝑛→𝑛+1)v𝑛 , (3.11)

where Δ𝑡𝑠 is the snapshot interval. The VTM is obtained from the vector color function c𝑛,
which is evolved using ELA, a method to solve

𝜕c𝑛
𝜕𝑡
+ u · ∇c𝑛 = 0 (3.2)

in the discrete form

s𝑛𝑖 𝑗 𝑘 (𝑡) ≡
∫
𝛺𝑖 𝑗𝑘

c𝑛 (x, 𝑡) d𝑉

Δ𝛺𝑖 𝑗 𝑘
. (3.19)

While we do not find the memory or computational cost of ELA prohibitive in practice, in
this appendix we discuss matrix multiplication as a way to, if desired, decrease the cost with
a trade off in accuracy.

B.1 Memory cost of Eulerian label advection
While there is limited additional computational effort required for ELA due to the reuse of
the flux information from cVOF (see §3.4.2), there is a memory cost related to storing the
source vector s𝑛. s𝑛 is generally very sparse, so rather than attempting to store the entire
length for each cell, we store the index and value {ℓ, 𝑠ℓ} of each non-zero entry of s𝑛 in a cell.
The same approach applies to storing c̃ during advection (see (3.25)). Thus, the memory
cost scales with the number of non-zero entries in each cell, nnz[s𝑛𝑖 𝑗 𝑘 ].

To bound nnz[s𝑛𝑖 𝑗 𝑘 ], we first note the total size of s𝑛𝑖 𝑗 𝑘 is equal to the number of bubbles
at 𝑡𝑛, 𝑀𝑛. Assuming the CCL method used will not generate more than one label per
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Figure B-1: Illustration of the flow of information using ELA and matrix multiplication with 𝐾 = 8
and 𝑁 = 3. After using ELA over 𝐾 simulation time steps, the information in s𝑛 is summarized in a
VTM using (3.40). The information in 𝑁 of these VTMs is summarized in an effective VTM using
(3.13).

cell and noting that the Courant restriction limits advection of s𝑛 to immediate neighbors
each simulation time step Δ𝑡, over a snapshot interval involving 𝐾 simulations time steps,
Δ𝑡𝑠 = 𝐾Δ𝑡,

nnz(s𝑛𝑖 𝑗 𝑘 ) ≤ min
{︁(1 + 2𝐾)𝒩 , 𝑀𝑛

}︁
, (B.1)

where 𝒩 is the dimensions of the simulation. Although the scaling in our simulations is less
(Gaylo et al., 2022, Fig. 12), the upper bound suggests that memory requirements scale with
𝐾3, or Δ𝑡3𝑠 , for a three-dimensional simulation. Because numerical limits (see §3.5.3) as
well as physical reasons (see §5.6) typically impose a minimum desirable value of Δ𝑡𝑠, there
may be a desire to approximate long Δ𝑡𝑠 without increasing 𝐾 , which can be done through
VTM multiplication.

B.2 Source of error with VTM multiplication
As mentioned in §3.2.1, the left-stochastic nature of the VTM means that over 𝑁 snapshot
intervals,

v𝑛+𝑁 =

[︄
𝑛∏︂

𝑚=𝑛+𝑁−1
A(𝑚→𝑚+1)

]︄
v𝑛 , (3.12)

Which defines an effective VTM

Ã(𝑛→𝑛+𝑁) ≡
𝑛∏︂

𝑚=𝑛+𝑁−1
A(𝑚→𝑚+1) , (3.13)

with an effective snapshot interval Δ𝑡𝑠,eff. = 𝑁Δ𝑡𝑠. Therefore,

Δ𝑡𝑠,eff. = 𝑁𝐾Δ𝑡 . (B.2)

With Δ𝑡 constrained by the DNS solver, the effective snapshot interval can be adjusted
through the true snapshot interval during the simulation (𝐾) or through multiplying the
matrices in post-processing (𝑁), as illustrated in figure B-1.
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Figure B-2: Illustration of two bubbles at 𝑡 = 0 whose dark fluid briefly coalesces into one bubble at
𝑡 = 𝑇 but then fragments along the boundary between the two original bubbles such that at 𝑡 = 𝑇 all
of the volume from one original bubble is in only one of the final bubbles.

Although the effective VTM describes the same transition from v𝑛 to v𝑛+𝑁 , we note that
there is a loss of information when using matrix multiplication versus a larger 𝐾 . Through
the vector color function c𝑛, the source of each particle of air is known. However, when
A is calculated using (3.5), we integrate c𝑛 over the volume of each bubble, losing the
spatial distribution of c𝑛 within the bubble. In effect, matrix multiplication assumes that
after each true snapshot interval Δ𝑡𝑠, c𝑛 is homogeneous within a bubble, increasing the
apparent entropy. This is consistent with the stochastic interpretation of the VTM: it provides
a probability given only that a particle is within a bubble, not the specific location of the
particle within the bubble. However, this implied diffusion is inconsistent with (3.2), which
comes from the VTM providing less information than s𝑛. A result of this loss of information
is that effective VTMs depend on 𝑁 and are thus not unique.

As an example, consider the case illustrated in figure B-2. Two bubbles of equal volumes
𝑣𝑛2 = 𝑣𝑛1 briefly coalesce at 𝑡 = 𝑇 to form a single bubble of volume 𝑣𝑛+11 = 𝑣𝑛1 + 𝑣𝑛2. At 𝑡 = 2𝑇
the single bubble fragments along the original boundary such that no dark fluid was mixed.
Here we consider connectedness provided by CCL a given but note that such an event could
be either physical or spurious, as the connectedness accuracy for closely passing bubbles
depends on the CCL method and its parameters (Chan et al., 2021a). First, consider the case
where Δ𝑡𝑠 = 2𝑇 . Eulerian volume tracking produces the correct VTM:

A(0→2𝑇) =
[︃
1 0
0 1

]︃
. (B.3)

Even if this were a spurious event, ELA with Δ𝑡𝑠 ≥ 2𝑇 would correctly identify no exchange
of volume and no cycles. Second, consider the case where Δ𝑡𝑠 = 𝑇 , with 𝑁 = 2 to get

161



𝜏 = Δ𝑡𝑠/𝑡𝑏 𝑁 = Δ𝑡𝑠,eff./Δ𝑡𝑠 𝜏eff. = Δ𝑡𝑠,eff./𝑡𝑏
Case Lb 0.1000 1 0.1000
Case S1 0.0500 2 0.1000
Case S2 0.0250 4 0.1000
Case S3 0.0125 8 0.1000
Case S4 0.0063 16 0.1000
Case S5 0.0031 32 0.1000
Case S6 0.0016 64 0.1000

Table B-1: Summary of how we apply matrix multiplication to the simulations from table 3-1 to
obtain the same effective snapshot intervals.

Δ𝑡𝑠,eff. = 2𝑇 :

Ã(0→2𝑇)
=

[︃
0.5
0.5

]︃ [︁
1 1

]︁
=

[︃
0.5 0.5
0.5 0.5

]︃
. (B.4)

While Ã(0→2𝑇) still satisfies (3.11), the loss of spatial information when the vector color
function is collapsed into a VTM at 𝑡 = 𝑇 creates a more diffuse tracking matrix. This loss
of information means that there is no reliable way to decrease the diffusive error apart from
decreasing 𝑁 or introducing more information. Keeping 𝑁 constant, one would have to
make assumptions about the underlying flow to determine a likely evolutionary path from
the possible events present in the diffuse effective VTM. This is equivalent to a (only slightly
more constrained) Lagrangian tracking approach and would have the same challenges.

We note that, based on the interpretation of the VTM as a graph (see §3.3.2), it can be
shown that for the special case where Ã (or a connected component of it) found using 𝑁 > 1
has no cycles, it must be equal to the tracking matrix A′ (or a corresponding connected
component of it) found using a larger true snapshot interval and no multiplication over the
same time period (𝐾′ = 𝑁𝐾).

B.3 Performance of matrix multiplication
To study the effects of approximating long snapshot intervals through matrix multiplication,
we use otherwise identical simulations with different Δ𝑡𝑠 shown in table 3-1. We then
multiply the resulting VTMs using (3.13) to achieve the same Δ𝑡𝑠,eff./𝑡𝑏 = 0.1 (see table B-1).
Defining 𝑛′ to index the effective snapshot interval, i.e., 𝑡𝑛′+1 = 𝑡𝑛

′ + Δ𝑡𝑠,eff., each simulation
and subsequent matrix multiplication generates VTMs describing

v𝑛′+1 = Ã(𝑛
′→𝑛′+1)v𝑛′ . (B.5)

For case Lb, (Δ𝑡𝑠)Lb = (Δ𝑡𝑠,eff.)Lb, so no matrix multiplication is necessary and we use (A)Lb
as a reference. The difference introduced by matrix multiplication for the other snapshot
interval cases (Case S1, Case S2, etc.) is

D(𝑛′→𝑛′+1) ≡ Ã(𝑛
′→𝑛′+1) − [︁

A(𝑛′→𝑛′+1)
]︁

Case Lb . (B.6)
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Figure B-3: The average normalized volume conservation error due to matrix multiplication, 𝐸1, for
HIT simulations with different true snapshot intervals Δ𝑡𝑠 but the same effective snapshot interval
Δ𝑡𝑠,eff. = 𝑁Δ𝑡𝑠 (see table B-1).

For analysis, we remove columns of D(𝑛′→𝑛′+1) and entries of v𝑛′ relating to under-resolved
parent bubbles, 𝑣𝑛′𝑖 < 𝑣res.

We first confirm that matrix multiplication is volume conservative. The normalized
volume conservation error for each case is∥︁∥︁∥︁Ã(𝑛′→𝑛′+1)v𝑛′ − v𝑛′+1

∥︁∥︁∥︁
1∥︁∥︁v𝑛′+1∥︁∥︁1

By subtracting the error from Case Lb, we obtain the volume conservation error due to
matrix multiplication only:

(𝐸1)𝑛
′
=

∥︁∥︁D(𝑛′→𝑛′+1)v𝑛′∥︁∥︁1∥︁∥︁v𝑛′+1∥︁∥︁1
. (B.7)

Figure B-3 shows the average 𝐸1 error for the early and late time period normalized by
the number of matrix multiplication operations 𝑁 . The O(10−15) normalized error for all
simulations shows that matrix multiplication is volume conservative to machine precision.

While matrix multiplication is volume conservative, as discussed in §B.2, there is a loss
of accuracy. To quantify this, we examine how individual columns of the VTM differ due
to matrix multiplication. Based on D𝑛′ = {(𝑑𝑖 𝑗 )𝑛′}, we define the average difference per
column for each matrix

(𝐸2)𝑛
′
=

1
2

⟨︄∑︁
𝑖

|︁|︁|︁(𝑑𝑖 𝑗 )𝑛′ |︁|︁|︁⟩︄
𝑗

. (B.8)

Noting that (by volume conservation)
∑︁
𝑖 𝑑𝑖 𝑗 = 0 and that for any VTM

∑︁
𝑖 𝑎𝑖 𝑗 = 1, we see

that the factor of 1/2 guarantees (𝐸2)𝑛
′ ∈ [0, 1]. Figure B-4 shows that the trend of the

growth of the average 𝐸2 error for both the early and late time periods behaves similarly
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Figure B-4: The growth of the average 𝐸2 error with 𝑁 for HIT simulations with different true
snapshot intervals Δ𝑡𝑠 but the same effective snapshot interval Δ𝑡𝑠,eff. = 𝑁Δ𝑡𝑠 (see table B-1).
Values are normalized by the value for 𝑁 = 16 (case S4): (⟨𝐸2⟩𝑛′)S4 = 0.029 for the early and
(⟨𝐸2⟩𝑛′)S4 = 0.079 for the late interval.

with changing 𝑁 , apart from a scaling coefficient. For 𝑁 ≫ 1, 𝐸2 exhibits approximately
logarithmic growth. Although the similar behavior between early and later time periods
suggests this logarithmic growth is independent to the complexity of the flow; we caution that
this could also potentially depend on the type of CCL method used and the Δ𝑡𝑠,eff. chosen,
which we do investigate here. If logarithmic growth is generally true, it would mean that
large 𝑁s, and therefore small 𝐾s, can be used with only moderate loss of accuracy.

In Gaylo et al. (2022) there is additional analysis on how smaller 𝐾 reduce max{nnz(s𝑛)},
the largest number of non-zero entry in any single cell anytime during the entire simulation.
In the implementation of ELA used for that work, ELA1, memory was pre-allocated equally
among grid cells to store s𝑛, so the memory requirement scaled with max{nnz(s𝑛)}. We now
have a better implementation of ELA, flexELA2, which uses dynamic memory allocation
to store s𝑛, so the memory requirement scales with the average ⟨nnz(s𝑛)⟩ rather than the
maximum. In our experience, this newer implementation eliminates memory as a significant
barrier to using ELA.

1https://github.com/dgaylo/ELA
2https://github.com/dgaylo/flexELA
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Appendix C

Proof of Eulerian Label Advection
Volume Conservation

Using an approach based on the proof of cVOF volume conservation by Weymouth & Yue
(2010), this appendix proves that the Courant restriction

Δ𝑡
𝒩∑︁
𝑑=1

|︁|︁|︁|︁ 𝑢𝑑Δ𝑥𝑑

|︁|︁|︁|︁ < 𝐶 (2.13)

where 𝐶 = 1/2 guarantees that there is no over- or under-filling of the vector source fraction
field, i.e.,

0 ≤ (𝑠𝑙) (𝑑) ≤ 1 , (3.33)

for any component 𝑙 at any step 𝑑 = 1 . . .𝒩 of the operator-split advection. We have shown
that the flux terms are conservative and the dilation terms sum to zero (see §3.4.2), so
this proof of no over or under filling proves that ELA is volume conservative to machine
precision.

C.1 Mathematical proof

cVOF with 𝐶 ≤ 1/2 guarantees 𝑓 (𝑑) ≤ 1 (Weymouth & Yue, 2010). By construction,
ELA satisfies the consistency requirement, so (3.28) is always true and therefore 𝐶 ≤ 1/2
guarantees ∑︁

𝑙

(𝑠𝑙) (𝑑) ≤ 1 (C.1)

for any step 𝑑. Thus, at any step 𝑑, it is impossible for a component (𝑠𝑙) (𝑑) > 1 without at
least one other component (𝑠𝑙) (𝑑) < 0. This means that proving no under-filling,

0 ≤ (𝑠𝑙) (𝑑) , (C.2)

is sufficient to prove (3.33). It would also be sufficient to prove no over-filling, but we find
proving no under-filling is the easier path.
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To prove (C.2), for each operator-split step we consider the six possible combinations of
the magnitude and sign of the velocity on the positive (𝑢𝑟) and negative (𝑢𝑙) side of the cell:

(a) 𝑢𝑟 ≥ 𝑢𝑙 > 0
(b) 𝑢𝑙 > 𝑢𝑟 > 0

(c) 𝑢𝑟 > 0 > 𝑢𝑙
(d) 𝑢𝑙 > 0 > 𝑢𝑟

(e) 0 > 𝑢𝑙 ≥ 𝑢𝑟
(f) 0 > 𝑢𝑟 > 𝑢𝑙

Case (e) is symmetric with case (a) and case (f) is symmetric with case (b). This leaves
proving that cases a–d cannot under fill. For convenience we scale the velocities and fluxes
to local Courant numbers,

𝑢′ = 𝑢
Δ𝑡
Δ𝑥𝑑

, (C.3a)

F′ = F Δ𝑡
Δ𝛺

. (C.3b)

Thus, (3.25) becomes

s(𝑑) − s(𝑑−1) = F′𝑑+1/2 − F′𝑑−1/2 + c̃Δ𝑢′𝑑 for 𝑑 ∈ 1 . . .𝒩 , (C.4)

where Δ𝑢′𝑑 = 𝑢
′
𝑟 − 𝑢′𝑙 . Substituting in (3.30) and (3.31) and introducing absolute values to

illustrate the sign of each term,

case (a) : s(𝑑)𝑑 − s(𝑑−1)
𝑑 = − ŝ(𝑑−1)

𝑑

|︁|︁|︁𝐹′𝑑+1/2|︁|︁|︁ + ŝ(𝑑−1)
𝑑−1

|︁|︁|︁𝐹′𝑑−1/2
|︁|︁|︁ + ŝ(0)𝑑 𝑐̃

|︁|︁Δ𝑢′𝑑 |︁|︁ , (C.5a)

case (b) : s(𝑑)𝑑 − s(𝑑−1)
𝑑 = − ŝ(𝑑−1)

𝑑

|︁|︁|︁𝐹′𝑑+1/2|︁|︁|︁ + ŝ(𝑑−1)
𝑑−1

|︁|︁|︁𝐹′𝑑−1/2
|︁|︁|︁ − ŝ(0)𝑑 𝑐̃

|︁|︁Δ𝑢′𝑑 |︁|︁ , (C.5b)

case (c) : s(𝑑)𝑑 − s(𝑑−1)
𝑑 = − ŝ(𝑑−1)

𝑑

|︁|︁|︁𝐹′𝑑+1/2|︁|︁|︁ − ŝ(𝑑−1)
𝑑

|︁|︁|︁𝐹′𝑑−1/2
|︁|︁|︁ + ŝ(0)𝑑 𝑐̃

|︁|︁Δ𝑢′𝑑 |︁|︁ , (C.5c)

case (d) : s(𝑑)𝑑 − s(𝑑−1)
𝑑 = + ŝ(𝑑−1)

𝑑+1
|︁|︁|︁𝐹′𝑑+1/2|︁|︁|︁ + ŝ(𝑑−1)

𝑑−1

|︁|︁|︁𝐹′𝑑−1/2
|︁|︁|︁ − ŝ(0)𝑑 𝑐̃

|︁|︁Δ𝑢′𝑑 |︁|︁ . (C.5d)

Dropping the positive terms gives the inequalities,

case (a) : s(𝑑)𝑑 − s(𝑑−1)
𝑑 ≥ ŝ(𝑑−1)

𝑑 𝐹′𝑑+1/2 , (C.6a)

case (b) : s(𝑑)𝑑 − s(𝑑−1)
𝑑 ≥ ŝ(𝑑−1)

𝑑 𝐹′𝑑+1/2 + ŝ(0)𝑑 𝑐̃
(︁
𝑢′𝑟 − 𝑢′𝑙

)︁
, (C.6b)

case (c) : s(𝑑)𝑑 − s(𝑑−1)
𝑑 ≥ ŝ(𝑑−1)

𝑑 Δ𝐹′𝑑 , (C.6c)

case (d) : s(𝑑)𝑑 − s(𝑑−1)
𝑑 ≥ ŝ(0)𝑑 𝑐̃

(︁
𝑢′𝑟 − 𝑢′𝑙

)︁
, (C.6d)

where Δ𝐹′𝑑 = 𝐹
′
𝑑+1/2 − 𝐹′𝑑−1/2. Because the fluxes in ELA are calculated using up winding,

the negative terms we are interested in depend on ŝ𝑑 and not the value in neighboring cells
(ŝ𝑑−1 or ŝ𝑑+1). Thus, as all values of s and ŝ are for the cell of interest, not its neighbors, we
will drop the subscript index.
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Cases (a) and (c)

We start by considering case (a) and case (c). For these cases, cVOF ensures (Weymouth &
Yue, 2010)

𝐹′𝑑+1/2,Δ𝐹
′
𝑑 ≥ − 𝑓 (𝑑−1) . (C.7)

Thus, both (C.6a) and (C.6c) can be written as a looser bound

case (a), (c) : s(𝑑) − s(𝑑−1) ≥ −ŝ(𝑑−1) 𝑓 (𝑑−1) . (C.8)

Using (3.28), we can rewrite (3.29), the definition of ŝ, to give

s(𝑑−1) = ŝ(𝑑−1) 𝑓 (𝑑−1) . (C.9)

Substituting into (C.8), we have

case (a), (c) : s(𝑑) ≥ 0 . (C.10)

This shows that (C.7), which is guaranteed by cVOF for 𝐶 ≤ 1/2, also guarantees case (a)
and case (c) cannot under fill.

Cases (b) and (d) without dilation

For case (b) and (d), we start with 𝑐̃ = 0 (corresponding to 𝑓 (0) ≤ 1/2). For case (b), (C.6b)
with 𝑐̃ = 0 reduces to (C.6a). As (C.7) also applies to case (b) (Weymouth & Yue, 2010),
the previous proof for case (a) applies to case (b) with 𝑐̃ = 0 and we obtain

case (b) with 𝑐̃ = 0 : s(𝑑) ≥ 0 . (C.11)

For case (d), (C.6d) with 𝑐̃ = 0 reduces to

case (d) with 𝑐̃ = 0 : s(𝑑) ≥ s(𝑑−1) . (C.12)

As case (d) with 𝑐̃ = 0 can only increase each component of s between steps, it cannot lead
to under filling.

Cases (d) with dilation

This leaves us with case (b) and (d) with 𝑐̃ = 1. These cases are challenging as we must
ensure the dilation term, which is based on s(0) , does not subtract more than is present in
s(𝑑−1) . For case (d) we note that 𝑐̃ = 1 means that 𝑓 (0) > 1/2. Thus, (C.9) provides the
inequality

ŝ(0) ≤ 2s(0) . (C.13)

This allows us to write (C.6d) as a looser bound

case (d) with 𝑐̃ = 1 : s(𝑑) − s(𝑑−1) ≥ 2s(0)
(︁
𝑢′𝑟 − 𝑢′𝑙

)︁
. (C.14)
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We need to ensure successive operations cannot under fill, so we sum this expression over
𝑑 ≤ 𝒩 operations,

case (d) with 𝑐̃ = 1 : s(𝑑) ≥ s(0)
[︄
1 + 2

𝑑∑︁
𝑑′=1

min(Δ𝑢′𝑑′ , 0)
]︄

, (C.15)

Thus, to ensure s(𝑑) ≥ 0 we require

𝒩∑︁
𝑑=1

min(Δ𝑢′𝑑 , 0) ≥ −
1
2

. (C.16)

Recalling that
∑︁

𝒩

𝑑=1 Δ𝑢
′
𝑑 = 0 for a divergence-free flow, (C.16) is true for the Courant

condition

𝐶 =
𝒩∑︁
𝑑=1

|︁|︁𝑢′𝑑 |︁|︁ ≤ 1
2

, (C.17)

recovering (2.13).

Cases (b) with dilation

We now consider case (b) with 𝑐̃ = 1. For case (b) (in addition to (C.7)) cVOF with 𝐶 ≤ 1/2
ensures (Weymouth & Yue, 2010)

𝐹′𝑑+1/2,Δ𝐹
′
𝑑 ≥ −𝑢′𝑟 . (C.18)

This allows us to rewrite (C.6b) as a looser bound

case (b) with 𝑐̃ = 1 : s(𝑑) − s(𝑑−1) ≥ −ŝ(𝑑−1)𝑢′𝑟 + ŝ(0)
(︁
𝑢′𝑟 − 𝑢′𝑙

)︁
, (C.19)

For each component 𝑙 of the vector equation, it is now necessary to further split case (b) into
case (b.i), ( 𝑠̂𝑙) (0) < ( 𝑠̂𝑙) (𝑑−1) and case (b.ii), ( 𝑠̂𝑙) (0) ≥ ( 𝑠̂𝑙) (𝑑−1) . Recalling 𝑢𝑙 > 𝑢𝑟 > 0 for
both, this allows us to write

case (b.i) with 𝑐̃ = 1 : (𝑠𝑙) (𝑑) − (𝑠𝑙) (𝑑−1) ≥ −( 𝑠̂𝑙) (𝑑−1)𝑢′𝑙 (C.20a)
case (b.ii) with 𝑐̃ = 1 : (𝑠𝑙) (𝑑) − (𝑠𝑙) (𝑑−1) ≥ −( 𝑠̂𝑙) (0)𝑢′𝑙 . (C.20b)

Starting with case (b.ii), we use (C.13) to write

case (b.ii) with 𝑐̃ = 1 : (𝑠𝑙) (𝑑) − (𝑠𝑙) (𝑑−1) ≥ −2(𝑠𝑙) (0)𝑢′𝑙 . (C.21)

As with case (d), we sum over 𝑑 ≤ 𝒩 and obtain

case (b.ii) with 𝑐̃ = 1 : (𝑠𝑙) (𝑑) ≥ (𝑠𝑙) (0)
[︄
1 − 2

𝑑∑︁
𝑑′=1

|︁|︁𝑢′𝑑′ |︁|︁]︄ , (C.22)
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Figure C-1: Normalized 𝐿1 volume-conservation error for (a) cVOF and (b) ELA as a function of
the cVOF Courant restriction 𝐶.

where, to ensure the symmetric case (f) is also captured,
|︁|︁𝑢′𝑑 |︁|︁ = max

(︁|︁|︁𝑢′𝑙 |︁|︁ , |︁|︁𝑢′𝑟 |︁|︁)︁ . Thus, for
(𝑠𝑙) (𝑑) ≥ 0, we require

1 − 2
𝑑∑︁

𝑑′=1

|︁|︁𝑢′𝑑′ |︁|︁ ≥ 0 , (C.23)

which is always satisfied given the Courant condition 𝐶 ≤ 1/2.
This leaves case (b.i). Using (C.9), (C.20a) can be rewritten

case (b.i) with 𝑐̃ = 1 : (𝑠𝑙) (𝑑) ≥ (𝑠𝑙) (𝑑−1)
[︃
1 − 𝑢′𝑙

𝑓 (𝑑−1)

]︃
. (C.24)

Thus we require 𝑓 (𝑑−1) ≥ |𝑢𝑑 | for (𝑠𝑙) (𝑑) ≥ 0. The absolute value sign is introduced to
ensure symmetry with case (f). Rewriting (2.40) for 𝑐̃ = 1 in terms of the scaled velocities
and fluxes gives

𝑓 (𝑑) = 𝑓 (𝑑−1) + Δ𝐹′𝑑 +
(︁
𝑢′𝑟 − 𝑢′𝑙

)︁
. (C.25)

Using (C.18), 𝑓 (𝑑) ≥ 𝑓 (𝑑−1) − 𝑢′𝑙 . Summing (C.25) over 𝑑 − 1 ≤ 𝒩 − 1 and recalling we
are interested in 𝑓 (0) > 1/2, it can be shown cVOF guarantees the bound

𝑓 (𝑑−1) ≥ 1/2 − 𝐶 +
|︁|︁𝑢′𝑑 |︁|︁ . (C.26)

Thus 𝑓 (𝑑−1) ≥
|︁|︁𝑢′𝑑 |︁|︁ and therefore s(𝑑) ≥ 0 is true if 𝐶 ≤ 1/2, the same condition as (2.13).

C.2 Numerical validation
To validate the Courant restriction, we repeat the three-dimensional bubble fragmentation in
HIT from §3.5 with a snapshot interval equal to simulation time step (Δ𝑡𝑠 = Δ𝑡), without
using (3.35), with a zero-threshold value 𝜖 = 10−8, and with a coarser grid of 1283. Rather
than𝐶 = 1/2, we repeat the simulation with a range of𝐶. Although Δ𝑡 is chosen dynamically
based on (2.13) as well as numerical stability criteria (Campbell, 2014), we find that for
these simulations (2.13) is the most restrictive condition.
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The volume-error for this simulation over the time range 0 < 𝑡/𝑡𝑏 < 2 as a function of 𝐶
is shown in figure C-1. Note that an O(𝜖) error is expected for cVOF due to the filter (2.43).
We see that cVOF is volume conservative for 𝐶 as large as 0.8 and that ELA is also volume
conservative over a similar range. Due to the way inequalities are simplified, it is not a
surprise that the observed limit on 𝐶 is larger than the theoretical one derived by Weymouth
& Yue (2010) for cVOF and here for ELA. However, it is not clear how a larger theoretical
limit could be proven for cVOF, let alone ELA. The larger observed limit may be due to the
specific nature of the HIT flow we consider and may not be general, where the cVOF and
ELA proofs only assume the flow is divergence free.
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Appendix D

Correlations Between Density
Fluctuations and Turbulence in Strong
FST

In section 4.5.2 we consider the Reynolds stress term due to density in the momentum
equation, 𝜌′𝑤𝑤, and decompose it into three terms,

𝜌′𝑤𝑤 = 𝜌′0𝑤𝑤 + 𝜌′𝐵𝑤𝑤 + 𝜌′𝐷𝑤𝑤 , (4.25)

corresponding to the effects of the free surface, bubbles, and droplets respectively. In this
appendix we consider the Pearson’s correlation coefficient

𝑃𝑋,𝑌 ≡ E[𝑋𝑌 ] − E[𝑋] E[𝑌 ]√︃
E[𝑋2] − (E[𝑋])2

√︃
E[𝑌2] − (E[𝑌 ])2

, (D.1)

which describe the covariance between 𝑋 and 𝑌 normalized such that 𝑃𝑋,𝑌 ∈ [−1, 1]. Here
𝑋 will be the density fluctuations (𝜌′, 𝜌0, etc.) and 𝑌 the strength of the vertical fluctuations
(𝑤𝑤).

We start by deriving an expression for 𝑃𝜌′,𝑤𝑤. First, we can define a fluctuation in the
color function, 𝑐′ = 𝑐 − 𝑐. Recalling that 𝛾 = 𝑐, we can rewrite (4.23) as

𝜌′ = Δ𝜌 𝑐′ , (D.2)

Multiplying a variable by a constant does not change the Pearson’s correlation coefficient, so
𝑃𝜌′,𝑤𝑤 = 𝑃𝑐′,𝑤𝑤. Canceling terms in (D.1) where 𝑐′ = 0, we obtain

𝑃𝜌′,𝑤𝑤 =
𝑐′𝑤𝑤√︁

𝑐′𝑐′
√︁
𝑤𝑤𝑤𝑤 − 𝑤𝑤2

.

We can further simplify this expression because 𝑐 is a Bernoulli random variable, meaning it
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only takes values of 0 or 1. This leads to 𝑐′𝑐′ = 𝛾(1 − 𝛾), and finally

𝑃𝜌′,𝑤𝑤 =
𝑐′𝑤𝑤√︁

𝛾(1 − 𝛾)
√︁
𝑤𝑤𝑤𝑤 − 𝑤𝑤2

. (D.3)

The equations for 𝑃𝜌′0,𝑤𝑤 and 𝑃𝜌′𝐷 ,𝑤𝑤 are similar. Because 𝑐𝐵 takes values of 0 or −1, we
replace 𝛾 with −𝛾𝐵:

𝑃𝜌′𝐵,𝑤𝑤 =
𝑐′𝐵𝑤𝑤√︁

−𝛾𝐵 (1 + 𝛾𝐵)
√︁
𝑤𝑤𝑤𝑤 − 𝑤𝑤2

. (D.4)

For reference, Figure D-1 shows 𝜎𝑤𝑤 =
√︁
𝑤𝑤𝑤𝑤 − 𝑤𝑤2 from the forced FST simulations

analyzed in Chapter 4.
Figure D-2 shows the correlation coefficients from forced FST simulations analyzed

in Chapter 4, specifically those in the strong FST regime (Fr2
𝑇 > 0.1), and we find that all

correlation coefficients collapse well when plotted against 𝑧∗. As discussed in section 4.5.2,
𝜌′0𝑤𝑤 is the dominant term contributing to 𝜌′𝑤𝑤, so it is not a surprise that 𝑃𝜌′,𝑤𝑤 ≈ 𝑃𝜌′0,𝑤𝑤 .
Beneath 𝑧∗ ≈ 0.2, we see that 𝑃𝜌′0,𝑤𝑤 < 0. This means that the presence of air (𝜌′0 < 0) is
correlated with 𝑤𝑤 > 𝑤𝑤 and the presence of water (𝜌′0 > 0) is correlated with 𝑤𝑤 < 𝑤𝑤.
In other words, the magnitude of vertical velocity fluctuations is larger in air than water for
𝑧∗ < 0.2. For 𝑧∗ > 0.2 this reverses (𝑃𝜌′0,𝑤𝑤 > 0), meaning that water is associated with
larger vertical fluctuations. One interpretation is that the presence of water at these large 𝑧∗
is associated with high energy splashing.

Notably, we find that 𝑃𝜌′𝐵,𝑤𝑤 ≈ 0.005 meaning there is not a strong correlation between
the presence of a bubble and magnitude of vertical velocity. This is what one would expect
from a passive scalar, suggesting in these simulations bubble advection by turbulence is
dominant over buoyant rise. For what (small) correlation we do see, the sign (𝑃𝜌′𝐵,𝑤𝑤 > 0)
means that the presence of a bubble (𝜌′𝐵 < 0) is correlated with a slightly decreased
magnitude of the vertical fluctuations (𝑤𝑤 < 𝑤𝑤).
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Figure D-1: Standard deviation of 𝑤𝑤, 𝜎𝑤𝑤 , as a function of depth, normalized by 𝑢2
rms measured at

𝑧∗ = −0.5 as well as 𝑤𝑤 measured at each depth for strong FST (Fr2
𝑇 > 0.1, see figure 4-3a for color

legend).
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Figure D-2: Pearson’s correlation coefficients corresponding to Reynolds stress terms in (4.25) for
strong FST (Fr2

𝑇 > 0.1, see figure 4-3a for color legend). Note the difference in horizontal scales.
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Appendix E

Daughter Distributions from Bubble
Fragmentation in Homogeneous
Isotropic Turbulence
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(a) We𝐵 = 101–142, 𝑚̄ = 3.37
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(b) We𝐵 = 50–71, 𝑚̄ = 3.19
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(c) We𝐵 = 25–36, 𝑚̄ = 3.00
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(d) We𝐵 = 13–18, 𝑚̄ = 2.65
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(e) We𝐵 = 6.3–8.9, 𝑚̄ = 2.55

Figure E-1: Measured daughter size distributions 𝑓 ∗𝑉 (𝑣∗) and average number of daughter bubbles
𝑚̄ for different ranges of bubble Weber numbers We𝐵, all measured using 𝑇/𝑡ℓ = 0.4.
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Appendix F

Instability of Horizontal Shear Flow with
a Free Surface and Finite Depth

In this appendix, we extend “Instabilities of a horizontal shear flow with a free surface” by
Longuet-Higgins (1998) to include the effects of finite depth. Our interest is the stability of
the shear flow driven by (6.25), which can be modeled as perturbations from the mean flow

𝑢̄(𝑧)/𝑈 = 1 − 0.9988 sech(0.88137 𝑧/𝐿) , (F.1)

where the free surface is at 𝑧 = 0. Longuet-Higgins (1998) argue that, for the purposes of
stability analysis, one can consider a simpler mean flow,

𝑢̄(𝑧) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑈 −𝐻1 < 𝑧

Ω (𝐻2 + 𝑧) −𝐻2 < 𝑧 < −𝐻1

0 𝑧 < −𝐻2

. (F.2)

where 𝐿 = (𝐻1 + 𝐻2)/2, Ω ≡ 𝑈/2𝐿, and ℎ1 = 𝐻1/𝐿. Longuet-Higgins (1998) shows
ℎ1 = 0.1977 makes the stability characteristics of (F.2) similar to that of (F.1). We extend
the analysis by Longuet-Higgins (1998) to also include a bottom (where the vertical velocity
must be zero) at finite depth −𝐻3 < −𝐻2. This introduces a third parameter ℎ3 = 𝐻3/𝐿,
where ℎ3 = 4 in the shear flow simulations described in §6.4.

F.1 Linear dispersion relationship

For perturbations 𝑢 and 𝑤 in the lowest layer (𝑧 < −𝐻2), Longuet-Higgins (1998) consider

𝑢(𝑧 < −𝐻2) = − 𝑐 +i𝑘 (𝐸e𝑘𝑧)𝑒𝑖𝑘𝑥
𝑤(𝑧 < −𝐻2) = 𝑘 (𝐸e𝑘𝑧)𝑒i𝑘𝑥

. (F.3)

177



appropriate for infinite depth. For finite depth, we consider

𝑢(𝑧 < −𝐻2) = − 𝑐 +i𝑘 (𝐸e𝑘𝑧 − 𝐹e−𝑘𝑧)𝑒i𝑘𝑥

𝑤(𝑧 < −𝐻2) = 𝑘 (𝐸e𝑘𝑧 + 𝐹e−𝑘𝑧)𝑒i𝑘𝑥
. (F.4)

The bottom boundary condition (𝑤 = 0 at 𝑧 = −𝐻3) gives 𝐸e−𝑘𝐻3 + 𝐹e𝑘𝐻3 = 0. We define
𝜆3 ≡ e−2𝑘𝐻3 to express this boundary condition as 𝐹 = −𝐸𝜆3 Substituting this into (F.4),

𝑢(𝑧 < −𝐻2) = − 𝑐 +i𝑘𝐸 (e𝑘𝑧 + 𝜆3e−𝑘𝑧)𝑒i𝑘𝑥 ,
𝑤(𝑧 < −𝐻2) = 𝑘𝐸 (e𝑘𝑧 − 𝜆3e−𝑘𝑧)𝑒i𝑘𝑥 .

(F.5)

Now, following the same steps as Longuet-Higgins (1998), we define the velocity
perturbation in the intermediate layer

𝑢(−𝐻2 < 𝑧 < −𝐻1) =Ω(𝐻2 + 𝑧) − 𝑐 +i𝑘 (𝐶e𝑘𝑧 − 𝐷e−𝑘𝑧)ei𝑘𝑥 ,
𝑤(−𝐻2 < 𝑧 < −𝐻1) = 𝑘 (𝐶e𝑘𝑧 + 𝐷e−𝑘𝑧)ei𝑘𝑥 .

(F.6)

and in the upper layer,

𝑢(𝑧 > −𝐻1) =𝑈 − 𝑐 +i𝑘 (𝐴e𝑘𝑧 − 𝐵e−𝑘𝑧)ei𝑘𝑥 ,
𝑤(𝑧 > −𝐻1) = 𝑘 (𝐴e𝑘𝑧 + 𝐵e−𝑘𝑧)ei𝑘𝑥 .

(F.7)

Applying linearized free-surface boundary conditions (e.g., 𝑝 = 𝜌g𝜂) at 𝑧 = 0, gives

(𝑈 − 𝑐)2𝑘 (𝐴 − 𝐵) = g(𝐴 + 𝐵) . (F.8)

For 𝑧 = −𝐻1 we specify continuity of velocity 𝑤 and continuity of (linearized) force
𝜕𝑝/𝜕𝑥 ≈ 𝜌(𝑢̄ − 𝑐)𝜕𝑤/𝜕𝑧 − 𝜌𝑤 d𝑢̄/d𝑧, which gives the systems of equations[︃ (𝐴e−𝑘𝐻1 + 𝐵e𝑘𝐻1) = (𝐶e−𝑘𝐻1 + 𝐷e𝑘𝐻1)
(𝑈 − 𝑐)𝑘 (𝐴e−𝑘𝐻1 − 𝐵e𝑘𝐻1) = (𝑈 − 𝑐)𝑘 (𝐶e−𝑘𝐻1 − 𝐷e𝑘𝐻1) −Ω(𝐶e−𝑘𝐻1 + 𝐷e𝑘𝐻1)

]︃
.

(F.9)
Doing the same for 𝑧 = −𝐻2,[︃ (𝐶e−𝑘𝐻2 + 𝐷e𝑘𝐻2) = 𝐸 (e−𝑘𝐻2 − 𝜆3e𝑘𝐻2)
(0 − 𝑐)𝑘 (𝐶e−𝑘𝐻2 − 𝐷e𝑘𝐻2) −Ω(𝐶e−𝑘𝐻1 + 𝐷e𝑘𝐻1) = (0 − 𝑐)𝑘𝐸 (e−𝑘𝐻2 + 𝜆3e𝑘𝐻2)

]︃
.

(F.10)
We note that finite depth makes the last equation this last equation different than Longuet-
Higgins (1998).

Combining (F.8), (F.9), and (F.8) into a single system of equations, we have⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑍2(𝐴 − 𝐵) = 𝐴 + 𝐵
𝜆1𝐴 + 𝐵 = 𝜆1𝐶 + 𝐷

𝑍 (𝜆1𝐴 − 𝐵) = 𝑍 (𝜆1𝐶 − 𝐷) + 𝛽(𝜆1𝐶 + 𝐷)
𝜆2𝐶 + 𝐷 = (𝜆2 − 𝜆3)𝐸

(𝑍 + 𝑞) (𝜆2𝐶 − 𝐷) + 𝛽(𝐶𝜆2 + 𝐷) = (𝑍 + 𝑞)𝐸 (𝜆2 + 𝜆3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (F.11)
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where for clarity we have introduced the following notation:

𝜆1 = e−2𝑘𝐻1 ; 𝜆2 = e−2𝑘𝐻2 ; 𝑐0 = (g/𝑘)1/2 ; 𝑍 =
𝑐 −𝑈
𝑐0

, 𝛽 =
Ω
𝑘𝑐0

; 𝑞 = 𝑈/𝑐0 .

This is the same as Longuet-Higgins (1998), apart from the second to last and last equation
which now include the effect of 𝜆3 ≠ 0. To eliminate 𝐸 from the system of equations, we
rearrange the second to last equation in (F.11) to obtain

𝐸 (𝜆2 + 𝜆3) = (𝜆2𝐶 + 𝐷) Γ , (F.12)

where Γ = (𝜆2 + 𝜆3) /(𝜆2 − 𝜆3). We substitute this into the last equation in (F.11) to obtain⎡⎢⎢⎢⎢⎢⎢⎣
𝑍2(𝐴 − 𝐵) = 𝐴 + 𝐵
𝜆1𝐴 + 𝐵 = 𝜆1𝐶 + 𝐷

𝑍 (𝜆1𝐴 − 𝐵) = 𝑍 (𝜆1𝐶 − 𝐷) + 𝛽(𝜆1𝐶 + 𝐷)
(𝑍 + 𝑞) (𝜆2𝐶 − 𝐷) + 𝛽(𝐶𝜆2 + 𝐷) = (𝜆2𝐶 + 𝐷)Γ

⎤⎥⎥⎥⎥⎥⎥⎦ . (F.13)

After some algebra, this system of equations can be represented by the matrix equation⎡⎢⎢⎢⎢⎢⎢⎣
(𝑍2 − 1) −(𝑍2 + 1) 0 0
𝜆1 1 −𝜆1 −1
𝜆1𝑍 −𝑍 −𝜆1(𝑍 + 𝛽) 𝑍 − 𝛽

0 0 𝜆2 [(𝑍 + 𝑞) (Γ − 1) − 𝛽] [(𝑍 + 𝑞) (1 + Γ) − 𝛽]

⎤⎥⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐴
𝐵
𝐶
𝐷

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = 0 .

(F.14)
Thus, setting the determinant of the matrix to zero gives 𝑍 . After some manipulation,|︁|︁|︁|︁|︁|︁|︁|︁

(𝑍2 − 1) 2 0 0
𝜆1 −(1 + 𝜆1) −𝜆1 −1
0 2𝑍 −𝜆1𝛽 2𝑍 − 𝛽
0 0 𝜆2 [(𝑍 + 𝑞) (Γ − 1) − 𝛽] (𝑍 + 𝑞) (1 + Γ) − 𝛽

|︁|︁|︁|︁|︁|︁|︁|︁ = 0 . (F.15)

The result is a fourth order equation of the form

𝑝1𝑍
4 + 𝑝2𝑍

3 + 𝑝3𝑍
2 + 𝑝4𝑍 + 𝑝5 = 0 , (F.16)

which can be solved for 𝑍 for a given 𝑘 . From a 𝑍 , the frequency is

𝜔 = 𝑘𝑐 = 𝑘𝑐0(𝑍 + 𝑞) . (F.17)

For stability, our interest is how the imaginary part of (nondimensionalized) angular
frequency 𝜎 = 𝜔(𝐿/𝑈) depends on the (nondimensionalized) wave number 𝜅 = 𝑘𝐿, for a
given Fr2 = 𝑈2/𝐿g and depth ℎ3 = 𝐻3/𝐿. For Fr2 = 5, figure F-1 compares the infinite depth
solution to the finite depth solution for ℎ3 = 4. This deep (ℎ3 ≫ 1) but finite depth removes
the 𝜅 ≪ 1 instability present for infinite depth, but causes very little change to the 𝜅 ∼ 1
instability. For this branch, we find the unstable wave numbers are 𝜅 ∈ [0.6653, 1.2302].
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Figure F-1: Frequency Re[𝜎] and growth rate Im[𝜎] as a function of wave number 𝜅 for ℎ1 = 0.1977,
Fr2 = 5, and (a) ℎ3 = ∞; (b) ℎ3 = 4.

F.2 Results from large Froude number simulations

We now look for evidence of this shear flow instability in the DNS of large Fr. We perform
a simulation at Fr2 = 5 like that described in §6.4, but with the horizontal domain length
increased by a factor of 8/3 to capture possible longer waves. Because the free surface can
be multi-valued, there is not a strictly well-defined definition of the wave height 𝜂(𝑥, 𝑦)
based on the color function 𝑐. For an approximation 𝜂̂(𝑥, 𝑦), we obtain the correct total
gravitational potential energy if

1
2 𝜂̂(𝑥, 𝑦)2 =

∫ 𝑧1

𝑧0

𝑐𝑧 d𝑧 + 𝑧20 , (F.18)

where 𝑧0 is the bottom of the domain, 𝑧1 the top of the domain, and 𝑐(𝑥, 𝑦, 𝑧) = 1 in water.
This quadratic equation has two solutions of opposite signs, so we use the integral of 𝑐 to
guess the appropriate sign:

𝜂̂(𝑥, 𝑦) ≡ sign
[︃∫ 𝑧1

𝑧0

𝑐𝑧 d𝑧 + 𝑧0
]︃ √︄

2
∫ 𝑧1

𝑧0

𝑐𝑧 d𝑧 + 𝑧20 . (F.19)

This always gives the correct 𝜂̂(𝑥, 𝑦) = 𝜂(𝑥, 𝑦) if the free surface is single valued.

Using 𝜂̂(𝑥, 𝑦) sampled over 𝑡 ∈ [40, 70], we calculate the two-dimensional energy
spectrum 𝐸𝜂𝜂 (𝜿), normalized such that

∬
𝐸𝜂𝜂 (𝜿) d𝜿 = 1. For analysis, we split the wave
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Figure F-2: Wave spectrum, split into shear-parallel and shear-perpendicular components, for a
free-surface shear flow simulation at Fr2 = 5, averaged over 𝑡 ∈ [40, 70]. (- - - -) show the unstable
wave numbers 𝜅 ∈ [0.6653, 1.2302] from linear analysis and (——) shows 𝑘𝑇 = 2𝜋/𝐿𝑇 associated
with near-surface turbulence.

number space into energy parallel to the shear,

𝐸𝜂𝜂,∥ (𝜅) ≡ 4
∫ 𝜋/4

0
𝐸𝜂𝜂 (𝜅 cos 𝜃, 𝜅 sin 𝜃)𝜅 d𝜃 , (F.20)

and perpendicular to the shear,

𝐸𝜂𝜂,⊥(𝜅) ≡ 4
∫ 𝜋/2

𝜋/4
𝐸𝜂𝜂 (𝜅 cos 𝜃, 𝜅 sin 𝜃)𝜅 d𝜃 , (F.21)

shown in figure F-2. As expected, for long waves (𝜅 < 3) there is significantly more energy
in the parallel component than the perpendicular component. We see the majority of this
energy is around wave numbers 𝜅 = 1–2, nearby the range predicted from linear analysis.
For 𝜅 > 3, we see the wave spectrum becomes roughly isotropic. All these waves are much
longer than the longest wave number associated with near-surface turbulence, 𝑘𝑇 = 2𝜋/𝐿𝑇
(𝐿𝑇 ≈ 0.55𝐿 for this simulation).
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Appendix G

Verification of Grid Independence for
Free-surface Shear Flow

Yu et al. (2019) performed a grid convergence study for free-surface shear flow at the same Re
and similar Fr as here, and confirmed turbulence and the bubble population are sufficiently
resolved by the grid described in §6.4.1. In addition, we perform a convergence study of the
entrainment size distribution 𝐼 (𝑎) and degassing rate 𝛬(𝑎) measured by ELA, to confirm
they are sufficiently resolved. We perform a set of 3 simulations at Fr2 = 15 using the same
method described in §6.4.1, but with a finer grid of 5762 × 384. This gives Δ576 ≈ 0.018 and
𝜂𝑇/Δ576 ≈ 2.0, versus Δ384 ≈ 0.027 and 𝜂𝑇/Δ384 ≈ 1.3 from §6.4.1. For these simulations,
we include all bubbles of radius larger than 𝑎res = 1.5Δ576. For 𝑡 ∈ [40, 70], we obtain
𝜀 × 104 = 6.1 and 𝑢rms = 0.074, consistent with Fr2 = 15 using Δ384 (see table 6-3).

Figure G-1 compares the measured entertainment size distribution 𝐼 (𝑎), degassing rate
𝛬(𝑎), and bulk bubble size distribution 𝑁 (𝑎) between the two grid resolutions. These
correspond to figure 6-7a, figure 7-3, and figure 7-4a, and we note that the range of the
horizontal axis has been extended in figure G-1. Because there are only 3 simulations at Δ576
(compared to 6 with Δ384) there is more statistical variability, particularly for larger bubbles
of which fewer are observed in each simulation. From figure G-1, it is clear, especially for
the smallest bubbles where resolution would be a concern, that the results are consistent
between the Δ576 and Δ384 grids. We conclude that DNS with the Δ384 grid described in
§6.4.1 sufficiently resolves the relevant physics.
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Figure G-1: Entrainment size distribution (a), degassing rate (b), and bubble size distribution (c)
during 𝑡 ∈ [40, 70] for Fr2 = 15 with ◦, Δ384 and □, Δ576. For consistency, turbulence values from
Δ384 are used for non-dimensionalization and to calculate 𝛺(𝑎) and Fr2

𝑇 = 0.12.
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