Air Entraining Bubbly Flows Driven by Strong

Free-Surface Turbulence
by
Declan B. Gaylo

B.S., Webb Institute, 2019
S.M., Massachusetts Institute of Technology, 2021

Submitted to the Department of Mechanical Engineering in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2026

© 2026 Declan B. Gaylo. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license
to exercise any and all rights under copyright, including to reproduce, preserve, distribute
and publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Declan B. Gaylo
Department of Mechanical Engineering
January 5, 2026

Certified by:  Dick K.P. Yue
Philip J. Solondz Professor of Engineering, Thesis supervisor

Accepted by: Nicolas Hadjiconstantinou
Quentin Berg (1937) Professor of Mechanical Engineering
Graduate Officer, Department of Mechanical Engineering






Air Entraining Bubbly Flows Driven by Strong

Free-Surface Turbulence
by
Declan B. Gaylo

Submitted to the Department of Mechanical Engineering
on January 5, 2026 in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

Bubbles beneath turbulent free surfaces are ubiquitous in natural and engineering processes,
where predicting their size distribution is of fundamental importance. Examples include
air-sea gas exchange and bubble acoustics. The bubble size distribution N(a), where a is
radius, is governed by the population balance equation (PBE), which has a term for each
mechanism that evolves the bubble population. We consider fragmentation, entrainment,
and degassing. These mechanisms are driven by turbulence near the surface, but predicting
free-surface turbulence (FST) is a challenge for models, e.g., Reynolds-averaged Navier-
Stokes (RANS). We use direct numerical simulation (DNS) to resolve FST. We show that
turbulent Froude numbers Fr% = &/umsg > 0.1 delineate strong FST, where near-surface
turbulence is isotropic. We provide a robust definition of surface layer thickness ¢, which
collapses relevant metrics within the surface layer. For strong FST, free-surface effects are
restricted to the surface layer. Towards a surface layer model for RANS, we elucidate the
scaling of d and energy flux into the surface layer.

While DNS resolves turbulence, measuring bubble evolution mechanisms is a challenge.
We develop Eulerian label advection (ELA) to provide accurate volume-conserving bubble
tracking regardless of evolution complexity. ELA allows the first direct measurement of
evolution mechanisms in DNS of FST. For fragmentation, we verify that it can be treated
as memoryless (assumed by the PBE) and quantify the timescale to reach N(a) o« a~1%/3,
the equilibrium for fragmentation-dominated bubble populations. From DNS of multiple
FST flows, we show the large-bubble entrainment size distribution /(a) scales with Frg and
a~"%/3, consistent with a mechanism we describe. We obtain the degassing rate A(a), which
has turbulence-driven and buoyancy-driven regimes with different scalings. We find that
FST is degassing, not fragmentation, dominated, and derive the corresponding equilibrium
bubble population, N(a) = I(a)/A(a), which agrees with DNS measurements. Compared
to N(a) o a~'%3, this distinct new equilibrium has two power-law regimes, fewer large
bubbles, and is very sensitive to Froude number.

The findings of this thesis contribute to fundamental understanding of strong FST and
the size distribution of bubbles within it, and help pave the way for modeling and application
of these flows.

Thesis Supervisor: Dick K.P. Yue
Title: Philip J. Solondz Professor of Engineering
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Chapter 1

Introduction

1.1 Air Entraining Bubbly Flows

Turbulence beneath an air water free surface is present in a large variety of natural and
engineered flows. In this configuration, the free surface is affected by both the disturbing
force of turbulence and the restoring force of gravity. Surface tension also acts as a restoring
force, but for sufficiently large scales its effect is negligible compared to gravity. The ratio
of the strength of turbulence to the strength of gravity defines a turbulent Froude number
(squared),

I/t2

rms
, (1.1)
gLy

Fr% =
where 1 is the characteristic velocity of the turbulence, L = u} /¢ is the characteristic
length scale of the turbulence (where ¢ is the turbulent dissipation rate), and g is gravitational
acceleration. For small Fr% turbulence is suppressed by the restoring force of gravity, and
the free surface remains intact. For large Fr% turbulence overcomes gravity, and the free
surface is broken up (Brocchini & Peregrine, 2001a). A highly visible feature of large—Fr%
free-surface flows is the creation of bubbles as the broken free surface entraps air, and these
flows are often referred to as self-aerating or (as we do here) air entraining. Figure 1-1
shows examples of air entraining free-surface flows, where the characteristic “white water’
indicates the presence of entrained air, i.e., bubbles.

b

1.1.1 Examples in nature and engineering

One air entraining flow of interest is breaking waves in the ocean (e.g., figure 1-1e). The
resulting bubbles significantly increase the total surface area of the interface between air
and water, promoting the exchange of gases, including CO,, between the ocean and the
atmosphere (Thorpe, 1982; Wallace & Wirick, 1992; Farmer et al., 1993; Melville, 1996).
Additionally, when the bubbles rise to the surface and burst, they create tiny droplets known
as sea spray aerosols, which have significant implications on weather prediction (Veron,
2015). Beneath the ocean surface, the bubbles have a significant effect on acoustics, through
both sound generation and propagation (Medwin & Beaky, 1989; Lamarre & Melville, 1991;
Deane et al., 2013).
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(a) Beckton STP, Activated Sludge Tank. John Ros-  (b) Fast-moving waters of Orin Falls. NPS/Alyssa
tron, CC BY-SA 2.0 Mattei

(¢) USS Higgins (DDG 76) operates off the coast of  (d) Bubbly wakes behind boats near Boston. The
Haiti. U.S. Navy/Adrian White author

i ” b2 - it .,{gf o ".
(e) North Pacific storm waves as seen from the MV
Noble Star. NOAA

Figure 1-1: Examples of air entraining flow in (a) waste water treatment, (b) rivers, (c) ship wakes,
(d) boat wakes, and (e) ocean waves. The presence of “white water” indicates entrained air.

16



Another air entraining flow is in shallow rivers/streams (e.g., figure 1-1b) and dam
spillways (Falvey & Ervine, 1988; Chanson, 1996). Here the turbulent boundary layer grows
until it reaches the free surface, which, if Fr% is large, causes air entrainment (Keller et al.,
1974; Wilhelms & Gulliver, 2005). Similar to breaking waves, the resulting bubbles promote
gas exchange, and here the focus is often on modeling dissolved oxygen to understand the
health of the river/stream (Gulliver & Rindels, 1993).

Air entraining flows are also common in engineering. When the goal is to increase
air-water gas exchange, flows can be designed to promote air entrainment, such as aeration
cascades in water treatment plants (Chanson, 1996). In other flows the goal is to prevent air
entrainment, for example liquid-metal nuclear reactors are designed to prevent entrainment
of the nodal gas barriers above the liquid metal (Patwardhan ez al., 2012). Of particular
interest in this work is the air entraining flow around surface (or near-surface) vessels (e.g.,
figure 1-1c, d). The near-vessel air entrainment creates a prominent cloud of bubbles which
extends far into the wake (NDRC, 1946). The larger bubbles in the cloud rise to the surface
and create an observable surface slick, and the smaller bubbles make the bubbly wake
acoustically detectable far behind the vessel (Trevorrow et al., 1994). These features make
predicting the bubbly wake important to the design and operation of naval vessels.

We highlight that in all these examples the size distribution of bubbles is of critical
interest. For gas exchange one is interested in the surface area of the bubbles, and the ratio of
volume to surface area depends on bubble size. For acoustics, the scattering and absorption
properties of a bubble change significantly near its resonant frequency, which depends on
bubble size (Medwin & Clay, 1998).

1.1.2 Challenges predicting bubble size distributions

To enable prediction and analysis of systems which depend on bubbly free-surface flows, we
need numerical models which can predict the total volume and size distribution of bubbles
(Zabaleta et al., 2024). We see two main challenges that prevent current computational
fluid dynamics (CFD) tools from accurately predicting the bubble population. The first is
modeling turbulence near an air entraining free surface. Due to the large density differences
between air and water, closure models for this free-surface turbulence (FST) are a challenge
(Brocchini & Peregrine, 2001b; Hendrickson & Yue, 2019). Modeling FST is addressed in
Chapter 4.

The second challenge is modeling how the population of bubbles evolves in FST. There
is a huge difference between the large scales of the flow (e.g., the length of a ship O(100)
meters and the smallest bubbles in the flow, O (100) micrometers. This O(10°) separation in
scales makes resolving individual bubbles impossible. For illustration, Castro et al. (2016)
estimate that a CFD simulation of a ship with a resolution sufficient to resolve individual
bubbles would require 10 quadrillion CPU cores, orders of magnitude more cores than
humanity has ever manufactured. Thus, for CFD of physical-scale bubbly flow, it is clear we
need statistical models of how bubble populations evolve in FST, as a function of the local
turbulence levels.

In the next section we discuss how the population balance equation (PBE) provides the
framework for statistical modeling of bubble evolution. The PBE has been implemented
in CFD (e.g. Castro & Carrica, 2013), but accurate bubble population predictions require
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Figure 1-2: Illustration of the effect of the five physical mechanisms on the bubble population, in
terms of the bulk bubble size distribution N(a) (see (1.2) for definitions), and the total entrained
volume V (see (1.8) for definitions). The rendering comes from DNS of an air entraining FST flow
(see §6.4 for details).

accurate models of each of the underlying physical mechanisms that evolve the bubble
populations. Some mechanisms, like bubble fragmentation in turbulence, are relatively
well understood; however, others, like entrainment by FST, are not. A persistent barrier to
understanding these mechanisms is that measuring the individual evolution mechanisms
is difficult. This is difficult in experiments where visual access is a challenge, and is even
difficult in direct numerical simulation (DNS), despite it providing direct access to the
turbulent flow field. In Chapter 3 we develop a new numerical tool to provide robust
measurement of individual evolution mechanisms in DNS, and in Chapters 5-7 we use it
to gain new insight into the mechanisms in FST and how they affect the overall bubble
population.

1.2 Population balance equation for statistical modeling
of bubble populations
The bubble population in a region of interest can be described by the bubble size distribution

N(a) (dimensions [1/L]), where N (a)da is defined to be the number of bubbles of effective
radius' [a, a + da]. The evolution of N(a) is described by a Boltzmann-type PBE,

ON/ot(a) = Sqa(a) +Sy(a) +Sc(a) +1(a) — D(a), (1.2)

with source terms (dimensions [1/LT]) describing each of the five physical mechanisms
that evolve the bubble population (Sporleder et al., 2012):
* Sy(a) Dissolution where air dissolves into the surrounding water.

!For non-spherical bubbles, the effective radius « is based on the bubble’s volume v through a = (3v/47) 13,
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Sr(a) Fragmentation where turbulence breaks a bubble into multiple bubbles.
Sc(a) Coalescence where multiple bubbles join into one.

I(a) Entrainment where a bubble is created by entrapment of air at the free surface.
D(a) Degassing where a bubble bursts at the free surface.

Figure 1-2 illustrates how these five mechanisms evolve the bubble population in air entraining
free-surface flow. The PBE describes the evolution of the statistical distribution of the bubble
population, so each of the physical processes are also described by a statistical distribution.
At a high level, one goal of this work is to elucidate these processes’ distributions and,
through (1.2), predict the resulting N(a).

1.2.1 Physical mechanisms not considered in this work

We start with the physical processes that will not be investigated in this work: dissolution and
coalescence. Avoiding the details from chemistry, we assume a velocity Ujissolution Which
characterizes the rate at which air dissolves into the surrounding water per unit interfacial
area. A bubble’s volume scales like « @ and interfacial area like o« a2, which leads to
a characteristic timescale Tgissolution < @/Udissolution fOr dissolution to affect the size of a
bubble. We will consider bubble evolution of sufficiently large bubbles over sufficiently
short timescales 7" such that 7 < Tgissolution and the effect of dissolution is negligible. Using
bubbly ship wakes as an example, we are interested in the bubble evolution surrounding and
immediately behind ship (T ~ 10 seconds), rather than far behind the where dissolution
becomes relevant (T' ~ 10 minutes) (Trevorrow et al., 1994). Our DNS models air and water
as immiscible (see Chapter 2), in effect setting Ugissolution = 0 exactly.

Coalescence happens when multiple bubbles collide and then merge. Therefore, the
frequency of coalescence is primarily a function of the density of bubbles. The density of
bubbles can be described by the void fraction, which gives the average proportion of volume
that is occupied by air (as opposed to water). We will consider bubble evolution in flows
with moderate void fractions such that coalescence does not significantly affect the bubble
population. To address very large void fractions, incorporating coalescence is an area for
future work (see §8.2).

1.2.2 Physical mechanisms considered in this work

For flows with negligible dissolution and coalescence, the bubble evolution is described by
the PBE
ON/ot(a) = S¢(a)+1(a) — D(a). (1.3)

Fragmentation, entrainment, and degassing will be the focus of Chapters 5, 6, and 7
respectively, and how they interact through (1.3) informs our understanding of N(a). To
describe their interactions, it is first useful to introduce how each of these terms are modeled.
Fragmentation can be split into two terms,

S¢(a) = S}(a) - 8;(a), (1.4)

where S~ (a) describes the destruction of bubbles of radius a by fragmentation and S ;(a) the
creation of bubbles of radius a as daughters of the fragmentation of larger bubbles. For more
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details on the creation term see Chapter 5. For the destruction term, we model individual
fragmentation events as independent and memoryless (as verified in Chapter 5), in which
fragmentation is a Poisson process. This gives

S}(a) =Q(a)N(a), (1.5)

where Q(a) is the fragmentation rate (dimensions [1/7]). Similarly, if the degassing
statistics of individual bubbles are independent and memoryless, we can define a degassing
rate A(a) (dimensions [1/7T]) and

D(a) = A(a)N(a). (1.6)
We can now split (1.3) into two groups
ON/0t(a) = [I(a) + S}(a)] - [A(a) + Q(a)]N(a) , (1.7)

where the first group is terms describing the creation of bubbles of radius a, and the second
group described destruction of bubbles of radius a. The destruction terms are linear with
N(a).

1.2.3 Equilibrium and non-equilibrium bubble populations

In addition to N /dt(a) described by the PBE, it can also be useful to consider the change
in the total volume of bubbles, dV/dt where V = (4x/3) f N(a)a®da. Integrating (1.3)
using the same bubble volume weighted integral,

dv/dr=Q;-0p, (1.8)

where Q; = (47/3) f I(a)a® da is the flux of air volume from above to beneath the free
surface (entrainment flux) and Qp = (47/3) / D(a)a® da is the flux from beneath to above
the free surface (degassing flux). Fragmentation only moves air between bubble sizes, so it
does not contribute to dV/ds. As opposed to decaying bubble populations with negligible
entrainment (dV /dr < 0) such as during the quiescent period of breaking waves (Deane &

Stokes, 2002) or in the far wake of a ship, our interest is the behavior of air entraining flows
where Q; is relevant (dV /dr > 0).

For air entraining flows, we can classify the bubble population as being in either a
non-equilibrium regime where dV/dr > 0 and dN/dt(a) # 0, or an equilibrium regime
where dV/dt = 0 and N /dt(a) = 0. In this work we obtain a new equilibrium solution
to the PBE, and, by elucidating the individual terms of (1.7), we also inform modeling of
non-equilibrium bubble populations.
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1.3 Equilibrium bubble populations in plunging breaking
waves

As discussed in §1.1, one flow where the bubble population is of interest is breaking waves
in the ocean. For breaking waves, Garrett er al. (2000) predicted that the population of
large bubbles follows N(a) o« a~'%/3. “Large” refers to bubbles larger than the Hinze scale
ay (Hinze, 1955). Deane & Stokes (2002) observed this —10/3 power law in laboratory
experiments of plunging breaking waves. Since then, it has been observed by many in both
laboratory experiments and numerical simulations of breaking waves (see review by Deike,
2022). In this section we review the modeling assumptions used by Garrett et al. (2000).
While the resulting N(a > ap) o« a~'9/3 describes bubble populations beneath plunging
breaking waves, this work will show that this distribution does not apply universally to air
entraining flows (Chapter 7).

1.3.1 Derivation of -10/3 equilibrium solution

Garrett et al. (2000) consider a population of bubbles where very large bubbles are entrained
and then successively fragment into smaller and smaller bubbles. Garrett et al. (2000)
call this a fragmentation cascade and note analogies to the energy cascade description
of turbulence in the Kolmogorov inertial subrange. We can also describe fragmentation
cascades in terms of the PBE. Bubbles in the cascade (bubbles sized between the large
entrained bubbles and the Hinze scale) are only affected by fragmentation:

ON/ot(a) = Sy(a). (1.9)

At equilibrium ON /9t (a) = 0 and, recalling (1.4), we have 0 = S;Z(a) — S} (a). In words, the
rate at which bubbles of radius a are created as the daughters when larger bubbles fragment
is equal to the rate at which bubbles of radius a fragment. With a model of fragmentation,
this can be solved to obtain the associated N(a).
Fragmentation is governed by the balance between the disturbing force of turbulence on

a bubble and the restoring force of surface tension. The ratio between the two is given by the
bubble Weber number

282/3(2a)5/3
AT

where ¢ is the turbulent dissipation rate, a is the radius of the parent bubble, o is the surface-
tension coefficient, and p,, the density of water. The Hinze scale is defined as the bubble
Weber number Wey (and corresponding radius ay) below which surface tension largely
prevents fragmentation (Hinze, 1955). For Wep > Wey (i.e., a > ap), fragmentation
is unaffected by surface tension, and (as a result of the scaling of turbulence within the
Kolmogorov inertial subrange) the fragmentation rate follows (Martinez-Bazan et al., 1999a)

) (1.10)

Q(a > ay) < &Pa™?3. (1.11)

This gives the destruction term, S7(a) = Q(a)N(a). For the creation term, Garrett et al.
(2000) assume a simple model where all bubbles fragment into exactly m identically sized
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daughters. This assumption gives S;Z(a) = m*3Q(m'3a)N(m'3a) (see derivation by
Gaylo et al., 2021). If we assume a power-law solution to the large bubble population,

N(a) < d? fora> ay, (1.12)
then 0 = S;(a) - Sj:(a) simplifies to
0= Q(a)N(a) [mPP10P —1] | (1.13)

which is solved by g = —10/3.

1.3.2 Evaluation of modeling assumptions

The wide agreement on 8 = —10/3 for plunging breaking waves (Deike, 2022) suggests that
Garrett et al. (2000) provide a good model of the bubble population in that flow. However,
we will show in this work that it does not apply universally to bubble populations in air
entraining flows. To start, we consider the assumptions that went into the derivation in
§1.3.1.

Fragmentation dominance

The key assumption in §1.3.1 is that fragmentation is dominant over degassing, S¢(a) >
D(a), leading to the simplified PBE (1.9). In Chapter 7 we will study air entraining FST
and show that it leads to a degassing-dominated bubble population where S¢(a) < D(a),
creating a distinct power law g # —10/3.

Locality in fragmentation cascades

There can only be a fragmentation cascade if the daughter bubbles of fragmentation are only
slightly smaller on average than the parent bubble, a property called locality (Chan et al.,
2021b). If bubble fragmentation were non-local, a fragmentation event of a parent bubble
a > ay would often produce daughter bubbles of radii @ < ap, which would not further
fragment. In §1.3.1, by applying (1.11) to the creation and destruction term, we assumed
that it was possible for both daughter and parent to be larger than the Hinze scale (a > apy
and m'/3a > ay). This is where the assumption of locality enters.

Chan et al. (2021c¢) study the fragmentation cascade in simulations of plunging breaking
waves and measure locality, confirming that fragmentation is strongly local. In Chapter 5 we
study fragmentation in simulations of homogeneous isotropic turbulence and measure the
“speed” that air moves through the fragmentation cascade. We find this speed is finite, which
also confirms locality.

Entrainment only at large scales

In §1.3.1 we followed Garrett ef al. (2000) and assumed that bubbles are entrained only at
some large scale, below which entrainment is negligible, S(a) > I(a). Gaylo et al. (2021)
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address the case where entrainment is not restrained to large bubbles. They consider the PBE
ON/ot(a) = Sy(a)+1(a), (1.14)

and assume a cut-off power law for the entrainment size distribution,

a’  a < amax
I(a) « : 1.15

(@) {0 otherwise (1.15)
Fragmentation is modeled the same as in §1.3.1. By solving (1.14) for 9N /dt(a) = 0, they
obtain the power law solution

p=— 14 10/3, (1.16)

1 - (amax/a)7+4 B

For a < anay, there are two regimes of fragmentation-dominated bubble populations based
on the entrainment power law y:

- {—10/3 y > -4 a1

T ly+2/3 y<-4-

For weak entrainment (y > —4), most volume is entrained in the largest bubbles, and the
population still obtains § = —10/3. For strong entrainment (y < —4), most volume is
entrained in the smallest bubbles and entrainment rather than the fragmentation cascade set 3.
In Chapter 6 we show that entrainment of large bubbles in FST is strong (y = —14/3 implying
B = —4); however, we also find that degassing is dominant rather than fragmentation so
(1.17) does not apply.

1.4 Thesis Outline

While the equilibrium bubble size distribution is relatively well understood for super Hinze-
scale bubbles in plunging breaking waves (8 = —10/3), section 1.1.1 illustrates that there are
many other air entraining free-surface flows where predicting the bubble size distribution is
of interest. Recent observations of different large-bubble power laws in simulations of the
wake behind a dry transom stern (8 € [-5, —4]) (Hendrickson et al., 2019) highlight that
B = —10/3 is not necessarily a universal description of bubble populations in air entraining
free-surface flows. The purpose of this work is the development of more general models
of bubble populations which, through the PBE (1.3), consider all the relevant physical
mechanisms in air entraining flow.

Different air entraining flows may have certain specific mechanisms driven by the
large-scale flow structure (e.g., entrapment of a cavity by a plunging breaking wave (Deike
et al., 2016; Chan et al., 2021a; Gao et al., 2021)); however, strong turbulence beneath
the free surface is a common feature of many air entraining flows Brocchini & Peregrine
(2001a). Thus, for generality, our focus will be on the mechanisms driven by this free-surface
turbulence (FST). Using direct numerical simulation (DNS) of air entraining FST, along
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with a new numerical measurement technique, we elucidate these mechanisms and how they
scale, particularly with turbulent Froude number Fr%. Using these insights, we discover a
new regime for the equilibrium bubble size distribution of super capillary-scale bubbles in
FST, which is quantitatively distinct from 8 = —10/3 for plunging breaking waves.

The thesis is organized as follows,

* Chapter 2: Numerical Methods for Incompressible Turbulent Bubbly Flow

The numerical methods used to perform DNS of bubbly flow are reviewed. The governing
Navier-Stokes equations are introduced, and a second-order finite-volume solver, MPF-
Solver, is described. The conservative volume of fluid (cVOF) method (Weymouth & Yue,
2010) is described in detail, as the bubble tracking algorithm developed in Chapter 3 is
closely tied to cVOF. Also relevant to bubble tracking, the accuracy of different methods
for identifying and labeling bubbles is evaluated.

* Chapter 3: ELA Method for Volume-Conservative Bubble Tracking

A previous barrier to quantifying bubble evolution mechanisms is that they are difficult to
measure, even in DNS. To solve this, we develop Eulerian label advection (ELA) to track
the evolution of bubbles. As opposed to Lagrangian methods, the Eulerian nature makes
it robust, independent of the complexity of the bubble evolution. The method inherits
the volume-conservation of cVOF, meaning all air is tracked. The output of ELA is a
matrix-based description of bubble evolution, from which individual bubble evolution
mechanisms are easily accessible. ELA allows, for the first time, direct measurement of
bubble evolution mechanisms in air entraining FST (used in Chapter 5-7).

* Chapter 4: Characterizing the Surface Layer of Strong FST

The near-surface turbulence in air entraining FST is characterized. Fr% = 0.1 is found
to be the critical value above which gravity effects are weak enough for near-surface
turbulence to be nearly isotropic. For Fr% > 0.1 (strong FST), we show the effects of
the free surface are constrained to a surface layer of thickness d;/Ly o« Fr%. We show
that, even at these large Fr%, the free surface is largely intact and (compared to bubbles
or droplets) dominates near-surface dynamics. Scaling by 6, and turbulence properties
measured at the bottom of the surface layer collapses relevant turbulence metrics across a
wide range of Fr%. We discuss how these results inform reduced-order modeling of FST.

* Chapter 5: Bubble Fragmentation in HIT

The fragmentation term S7(a) is quantified using ELA in DNS of bubble fragmentation
in homogeneous isotropic turbulence (HIT). We identify three fundamental timescales
which characterize the statistics relevant to the PBE. In addition to the often-studied
bubble lifetime 7,, these are the relaxation time 7, and convergence time 7.. We find
7, < T, which validates that fragmentation events can be modeled as independent
and memoryless, a core assumption of the PBE. 7, provides the characteristic time for
fragmentation-dominated bubble populations to obtain the 8 = —10/3 equilibrium solution
and provides a new constraint on fragmentation models.
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* Chapter 6: Bubble Entrainment in FST

Through a mechanistic argument, we obtain the entrainment size distribution /(a) for
large (super capillary scale) bubbles entrained by FST. We find that entrainment scales
with bubble radius a~!4/3 and Fr?, independent from weak surface tension effects. The
sensitivity to Froude number is significantly stronger than previously thought (Yu et al.,
2020). We quantify /(a) using ELA in DNS of a flow which isolates entrainment by
FST, and a canonical free-surface shear flow, characteristic of the flow behind the transom
of a ship. In both flows, the agreement with our model is very strong (R? = 0.990 and
R? = 0.891 respectively). We also find evidence of I(a) oc a~'#/ in previous open channel
flow experiments (Wei et al., 2019), highlighting the generality of the FST entrainment
mechanism we describe.

» Chapter 7: Bubble Degassing in FST

Through a mechanistic argument, we obtain the degassing rate A(a), which has two
regimes split by a,. One where bubble rise is driven by turbulence (a < a,) and one
where it is driven by buoyancy (a > a4). We measure A(a) using ELA in the same DNS
of free-surface shear flow as Chapter 6 and obtain a good agreement with our model
(R? = 0.761), including the regime change at a,.

By quantifying degassing, we show that bubble populations in free-surface shear flow are
dominated by degassing rather than fragmentation (A(a) > Q(a)). Through the PBE
(1.3), we show degassing dominance leads to an equilibrium solution N(a) = I(a)/A(a),
distinct from the solution discussed in section 1.3. Using the /(a) from Chapter 6
and A(a) from this chapter, without introducing any additional fitting parameters, the
degassing-dominated bubble population we predict agrees well with the N (a) we measure
in the free-surface shear flow (R?> = 0.849). The proprieties of the degassing-dominated
bubble population make it easily distinguishable from fragmentation-dominated bubble
populations.
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Chapter 2

Numerical Methods for Incompressible
Turbulent Bubbly Flow

The first two sections of this chapter describe MPFSolver, the numerical solver that is
used throughout this work to perform DNS of two-phase incompressible flows. Section 2.1
provides a general overview of the solver, and section 2.2 focuses on volume of fluid (VOF)
method used to capture the two phases (air and water). Finally, section 2.3 describes
methods for identifying connected regions of air, i.e., bubbles, based on the VOF description.
In addition to providing a description of how the simulations throughout this thesis are
performed, an aim of this chapter is to introduce the numerical concepts on which the new
bubble-tracking algorithm presented in Chapter 3 is built.

2.1 Direct numerical simulation

2.1.1 Governing equations

For the flows of interest in this work, it is assumed that both fluids are incompressible
Newtonian fluids. Noting that density p and viscosity u at a point in space depends on which
phase is present, the governing equation is the incompressible Navier-Stokes equation (N-S),
written in single-fluid form but with variable density and viscosity:

V.-u=0, (2.1a)

@+u-Vu:—le+lV-‘r—géZ+0'K63ﬁ+f, (2.1b)
ot o Io

where u is the fluid velocity, p is the pressure, T = u (Vu + VuT) 1s viscous stress tensor, g
is gravitational acceleration (the positive-z direction is up), and f denotes any additional
applied forces (see section 2.1.5). For surface tension o is the surface tension coefficient,
is the interfacial Dirac delta function, i is the interface normal vector, and « is the interface
curvature.

For the flows of interest in this work, we will treat the two phases as immiscible. This
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means the mixture can be described by a binary field called the fluid color function,

1 if x e ‘dark’ fluid
c(x,t) = . . L (2.2)
0 if x e ‘light fluid
In incompressible flow the volume of each fluid is conserved, so the color function is also
conserved. This leads to a third governing equation,

dc
—+u-Vec=0. 2.3
Y (2.3)
MPFSolver uses the convention that the ‘dark’ fluid is water and the ‘light’ fluid is air.
Based on the color function, we can express the density and viscosity as

P =pa(l—c)+pyc, (2.4a)

M= pa(l—c)+ pye. (2.4b)

Here p,, and p,, are the values for water and p, and y, are for air. We note that the choice
of which fluid is ‘dark’ versus ‘light® is arbitrary and all the numerical methods discussed
here are agnostic to this choice. In section 2.3 when describing bubble identification and
Chapter 3 when describing bubble tracking, it is more convenient to use the convention that
¢ = lisair and ¢ = 0 is water.

Without change of notation, we nondimensionalize the governing equations by a
characteristic velocity scale U, length scale L, and the properties of water p,, and u,,. (2.1a)
and (2.3) remain unchanged, and (2.1b) becomes

d 1 1 6, k&
M ou-Vuz——Vpt — Voo 2 Kspg 2.5)
ot Je PRe Fr2  We

where nondimensionalized density and viscosity,
p=A(1-c)+c, (2.6a)

u=n(l-c)+c, (2.6b)

replace (2.4), with the ratios defined A = p,/p,, and n = u,/u,,. Unless otherwise noted, we
use A = 0.00123 and n = 0.0159, characteristic of air and water. In (2.5), the parameters that
describe a flow are Reynolds number Re = UL/v,, (where v,, = u,,/p,,), Froude number
(squared) Fr* = U?/gL, and Weber number We = UL/ (o /py,).

For calculations, we separate the pressure into a pseudo hydrostatic component and a
pseudo dynamic component, p = pj, + pg. The pseudo hydrostatic component is defined in
reference to the top of the domain in z,

1 Znax , ,
pr(x,y,2,t) = —2/ plx,y, 7' 1)dz". 2.7)
Fre J;
We say “pseudo” here because p is a function of time so pj, is not actually static. Still, this
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separation is useful numerically because V p;, cancels out the gravity term in the z-component
of (2.5) such that the remaining Vp; term does not have a strong anisotropy.

In summary, two-phase incompressible flow is described by velocity u, color function c,
and pseudo dynamic pressure p; and is governed by the three equations,

Vou=0, (2.82)
%+u-Vc:0, (2.8b)

ou 1

M Vp,+frus|uc]. 2.8

Y ole] pa +frus|u, c] (2.8¢c)

For conciseness, we group terms of (2.5) that will be treated explicitly into an acceleration
term frygs which we note is a function of u and c¢. Density is a function only of c.

2.1.2 Temporal discretization

We use a two-stage Runge-Kutta method described by Dommermuth et al. (2004) to provide
a second-order in time discretization. For each stage, frys is found explicitly and a pressure
projection method is used to calculate p,. For a given velocity field u* and color function
field c* at time t* we seek the velocity field u**! and color function field ¢**! at time
%1 = ¢tk & At. For the two-stage Runge-Kutta method, this is done over two iterations. For
the first iteration: a predictor step

w2 Z gk 4 A fris [uk’ck] : (2.9a)

accounts for the explicit terms; a Poisson equation

1 kei2) _ 1 k12
A\ (mvpd = EV u ) (29b)

is solved to find a dynamic pressure p,*+1/2

by the new pressure

which enforces (2.8a); The velocity is corrected

1
uk+1/2 — u*k+1/2 _ At - Vpdk+l/2 : (29C)
plct]
and the color function is updated

2 = cVOF |uk, cf] . (2.9d)

For the second iteration, the same steps are repeated:

kpukl/2 A

wkl = % + > fRis [uk+1/2’ck+1/2] ’ (2.102)

v. [l g, k) o Ly gk (2.10b)
o[k Pd | = ’ :
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At 1
k+1 wk+1 k+1
u =u -— —V , 2.10c
2 o[k Pd (2.100)
k| k)2
+
K = cVOF %,ck] (2.10d)

For (2.9d) and (2.10d), the (discretized) color function field is updated using the conservative
Volume of Fluid (cVOF) method (Weymouth & Yue, 2010), which is discussed in section 2.2.
Note that the pressure correction step is done before updating the color function field. This
ensures that the two terms on the right side of the momentum equation (2.8c) are calculated
using the same density field.

The time step At is chosen dynamically based on the criteria described by Campbell
(2014, §5.3.4), with two exceptions. First, for the vicious criteria, we use

At < éRe min [Axg]? (p/w) (2.11)

where the constant 1/6 comes from Tryggvason et al. (2011, §3.1).! The large difference in
u and p between air and water coupled with numerical interpolation means that special care
must be taken with how p/u is calculated near fluid interfaces. In Appendix A we derive a
definition of ¥ = u/p which ensures (2.11) guarantees linear stability. Second, when surface
tension is modeled, an additional criteria,

At < \/8% We (1 + 1) (min [Axg])?, (2.12)

is also considered. Generally, we find the dynamic selection of At is driven by the cVOF
Courant restriction,
N
Aty
d=1

where ./ = 3 is the number of dimensions and C = 1/2 (Weymouth & Yue, 2010).

<C, (2.13)

Uq
Axd

2.1.3 Spatial discretization

We use a second-order finite-volume approach using the marker-and-cell (MAC) staggered-
grid method (Harlow & Welch, 1965), where scalar quantities are described at cell centers
and the velocity components are described at the respective cell-face centers. This is done
on three-dimensional Cartesian grids of size N; X N; X Ny. Figure 2-1 provides a two-
dimensional illustration of the MAC staggered grid. Following the standard finite-volume
approach, the integral of a quantity within a discrete control volume defines the cell-centered
value. For the color function field, this defines the VOF field,

le_jk c(x,t) dV
AQ;jk ’

fijk(t) = (2.14)

!Campbell (2014) uses 3/14 intended for a two-step Adams-Bashforth scheme.
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Figure 2-1: Two-dimensional illustration of MAC staggered-grid mesh, where the dashed box
indicates the control volume for the: (a), pressure and VOF grid; (b), u-velocity grid; and (c),
v-velocity grid.

where ;. is the region of each cell in the density grid with volume AQ; ;. = / Qi dV. Sec-
1

tion 2.2 discusses how careful integration of (2.8b) over £;;; obtains a volume-conservative
scheme to advance f in time (Weymouth & Yue, 2010). Performing the same integration on
(2.6), we obtain the (non-dimensional) fluid properties for each cell in the density grid,

pijk = AL = fijk) + fiji (2.15a)

ik =n(1 = fiji) + fiji - (2.15b)

In some simulations it is useful to smooth the discontinuities in fluid properties, in which
case we use the filter described by Tryggvason ez al. (2011, §7.1.4) to generate a smoothed
VOF field, f;;;, which is used in place of f;jx in (2.15).

For u, the velocity in the x-direction, the grid is staggered in x (see figure 2-1). The
velocity at the center of this staggered control volume is

k
fgi—l/z_/'k u*(x) dV

Hic1/2jk = AQ; 172 jk

(2.16)

The same can be defined for v, the velocity in the y direction, and w, the velocity in the z
direction. By integrating over these cells and applying divergence theorem, discrete forms of
(2.9a), (2.9¢), (2.10a), and (2.10c) can be derived that are second-order in space (Tryggvason
et al., 2011, Chapter 3). For the advection term in frys, we use the second-order centered
scheme.

For the viscous term in frys, a challenge for two-phase flow is calculating the viscosity.
The diagonal terms of 7 need the cell centered value y; i, which is easily available from MAC
using (2.15b). However, for the off-diagonal terms there is not a consistent second-order
method for two-phase flows using MAC (Tryggvason et al., 2011). Campbell (2014) uses
a harmonic mean approximation which is exact when the interface normal aligns with a
specified Cartesian axis; however, this approach cannot be applied to bubbly flows where the
interface normal can be in any orientation. Instead, we follow Yu (2019) and use a simple
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arithmetic mean,

Hijk + it jk + Hij+1k T Hivl j+1k
Miv1/2j+1/2k = & s 4” St . 2.17)

The effect of this interpolation method on the viscous timestep restriction (2.11) is discussed
in Appendix A. Tryggvason et al. (2011) note that the arithmetic mean approach is more
robust than the harmonic mean, but, in effect, increases the viscosity in a region near the
interface.

For the surface tension term in frys, we use a continuous surface force method (Brackbill
et al., 1992), as implemented by Yu (2019). To calculate interface curvature, we first
interpolate the VOF field to the respective velocity grid. For each cell, we calculate the
interface height in the 3 x 3 stencil of neighboring cells perpendicular to the dominate
interface direction in that cell, as determined by interface reconstruction described in
section 2.2.1. For each cell in the stencil, we first attempt to calculate the interface height
using the forward and backward search described by Popinet (2009, Algorithm 4), but fall
back to a sum over 7 cells when this fails. Based on the 9 height functions in the 3 X 3 stencil,
the curvature is calculated using a standard second-order finite-difference scheme (Francois
et al., 2006, eq. 33-36). Because we calculate curvature after interpolating the VOF field to
velocity grid, no interpolation of the curvature is necessary (cf. Francois et al., 2006, eq. 37).

Finally, we have (2.9b) and (2.10b) to calculate the pseudo dynamic pressure p,;. We
highlight that this is the only step that is solved implicitly. Tryggvason et al. (2011) provide a
description of the discrete form of (2.9b) and (2.10b) for MAC as well as the accompanying
boundary conditions. The result is a variable coefficient Poisson equation, which we use
the hypre library? (Falgout et al., 2006) to solve using the generalized minimal residual
(GMRES) method .

2.1.4 Minimum grid size

To accurately resolve the physics described by (2.1), it is essential that the grid size A is
small enough to capture the necessary scales.

Resolving turbulence

In this work, we directly model the flow without any turbulence closure models. This DNS
approach requires us to capture the smallest scale of turbulence, the Kolmogorov microscale,

nr ~ & V/4Re 34 (2.18)

where ¢ is the turbulent dissipation rate. For MPFSolver, previous convergence studies by
Yu (2019) and an additional convergence study here focused specifically on bubble evolution
(see Appendix G) show that a grid size

nr/A > 1 (2.19)

thtps ://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods
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is sufficient to resolve the turbulence and its effects on bubble evolution. While DNS fully
resolves turbulent flows described by N-S without any additional modeling, computational
limitations on the number of grid cells mean that, with current high-performance computing,
we are typically limited to Re < 10°.

Resolving surface tension

For simulations that include surface tension (finite We), the cell Weber number,
2

urmsA

" 4n(o/pw)’

estimates the ratio between the grid and the minimum characteristic radius of curvature of
an interface deformed by inertial turbulence. Popinet (2018) suggest

Wen (2.20)

Wea < 1 (2.21)

ensures surface tension forces are resolved by the grid. Alternatively, some compare the ratio
of the grid size to the Hinze scale ay o« £ 2/3(o/ pw)3/ 3 (see (5.1) in Chapter 5) and suggest

Alag S 1. (2.22)
This ratio is related to (2.20) through
Alay < We” (A/Lr)*? (2.23)

where Ly = ul /& is the characteristic length scale of the turbulence. The ratio of
Ly /nr o Re3/4, meaning that, for a given Re, A/Ly in (2.22) is usually fixed by the
requirement to resolve the Kolmogorov scale (2.19). In practice, we find (2.22) is usually
redundant to (2.21).

2.1.5 Linear forcing

To simulate quasi-steady turbulence, it is necessary to inject energy into the flow to balance
the energy lost to heat through dissipation. A common method to do this is linear forcing
(Lundgren, 2003; Rosales & Meneveau, 2005). In (2.1b) we define a body force linearly
proportional to the turbulent fluctuations

f=Au", (2.24)

where, to guarantee the forcing does not impart a net change in momentum, u” is from Favre
averaging,
u”’ =u-(pu)/(p). (2.25)

With no mean flow ({pu) = 0), the turbulent kinetic energy (TKE) budget becomes

1 D{pu -
5% = —(p)e + (Apu - u) + production at domain boundaries . (2.26)

33



€ is the mean turbulent dissipation rate (units [L?/T7]),
e =(t:Vu) /{p), (2.27)

To obtain quasi-steady turbulence, we want no (statistical) change in TKE. Assuming the
value of A in (2.24) is a constant throughout the domain and that there is no TKE production
at the boundaries, the right side of (2.26) is made zero by

A=¢g/2k, (2.28)

where k is the TKE density 3
k= 3(pu-uw)/(p). (2:29)

In practice, A can be either a fixed value, or can be calculated each time step based on a target
dissipation rate &gt and k measured from the current flow field (Rosales & Meneveau,
2005), i.e.,

A = Earget/ 2k . (2.30)

We use this second approach. In this approach, the energy injected by the forcing term is
A{pu-u) = (p)Erger. For single phase flow, this second approach corresponds to a constant
rate of energy injection.

Extension to two-phase flows

To ensure that liner forcing does not affect the behavior of bubbles in turbulence, it can be
useful to only apply this forcing outside of regions of air (where f = 1) (Riviere et al., 2021).
For the simulations in Chapter 5, the forcing term from (2.24) is multiplied by f (shifted to
the appropriate velocity grid by linear interpolation) and (-) is replaced with averaging in
the water,

Jow

<'>w— /de .

(2.31)

Extension to vertically varying forcing

It is often useful to do forcing in only part of the domain rather than the entirety. Following
Guo & Shen (2009) we will consider forcing weighted by a function F (z):

f=Au"F(2). (2.32)
The averaging (-) used in (2.27) and (2.29) for calculating A is similarly weighted,

_ f <F(z)dV

O oW

(2.33)

For (2.25), we need to be a bit more careful with averaging. If we used (2.33), large-scale
structures in (u)y(z) and (v)g(z) would grow quickly, as viscosity would be insufficient to
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dissipate them. Instead, we use a planar average which is a function of z,

[ - dxdy
[[dxdy

This avoids forcing structures of any scale in (u)y(z) or (v)g(z). While one could use
more advanced filtering to avoid only large-scale structures, when we use this vertically
varying forcing in simulations (see §4.3) our interest is turbulence outside the forcing region
(7 (z) = 0). Because we are not too interested in the higher-order turbulence statistics within
the forcing region (7 (z) # 0), we find this simple method sufficient.

(Fu(z) = (2.34)

2.2 Conservative volume of fluid method

This section describes the cVOF method developed by Weymouth & Yue (2010) to advance
the VOF field in time, as used by (2.9d) and (2.10d). We start with (2.8b), the governing
equation for the transport of the color function field. Because c is not smooth, V¢ is not
well defined; however, we can integrate over each cell Q;;; in the density grid and apply
divergence theorem to obtain the well-defined equation

0
—/ ch:—}Ig cundS+/ cV-udVv, (2.35)
ot Qi 0Q;jk Qi

where 09, is the surface of cell Q;; and u, is the velocity normal to the surface (using the
convention that u,, > 0 indicates flow out of the cell). For conciseness, we consider a single
cell and drop the “ijk” subscripts. Recalling (2.14), we can write the previous equation in
terms of the VOF field,

af

AQ— = —F,; +/ cV-.-udv, (2.36)
ot 0

where F),,; describes the net flux of ¢ out of Q.

Weymouth & Yue (2010) propose an operator-split advection scheme to solve (2.36). To
go from the VOF field f* at time t* to f**! at t**! =tk + At in an .#" dimensional domain,’
an operator-split method calculates intermediate fields f(¥) ford = 1....# where f(© = £k
and ) = 1 Each intermediate step corresponds to advection in one direction,

A9 (f<d> - f<d—‘>) = Faaipp— Faip + / MGy for el @37

At o Oxg
Thus, for each direction, an operator split scheme requires calculating the flux on the positive
face (Fy41/2), the flux on the negative face (F;_1/2), and the dilation term. Section 2.2.1
describes the explicit second-order interface reconstruction method used by cVOF to calculate
the flux terms and section 2.2.2 describes the treatment of the dilation term.

Weymouth & Yue (2010) identify three requirements for a volume-conservative (to

machine precision) operator-split advection scheme:

3Here, for simplicity, we consider single-stage time-stepping. For two-stage Runge-Kutta, the only difference
is the velocity used for the second stage is the average of u* and u**!/2, as shown in (2.10d).
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Figure 2-2: Illustration of the geometric calculation of the flux term F, /> based on the reconstructed
interface ( ) after being transported by a face velocity ug.1/2 > 0 (- - - -).

1. flux terms are conservative,

2. the dilation terms sum to zero, and

3. there is clipping due to over or under filling at any step.
Over or under filling refers to violation of

0<fD<r, (2.38)

which would clearly be incompatible with the definition of the VOF field as the average of
a binary color function, (2.14). We note that, due to the arbitrary choice of which fluid is
‘dark’ and which is ‘light®, the difference between under filling and over filling is simply a
matter of convention. A conservative advection scheme should have neither.

2.2.1 Interface reconstruction-based flux calculation

Within each grid cell, cVOF represents the interface as a linear plane, described by an
interface normal vector n and a scalar intercept a. In this representation, the interface is
located at locations x such that

n-x=a. (2.39)

There is a known analytic function to determine the void fraction f of a cell given « and n,
and Scardovelli & Zaleski (2000) provide an explicit inversion to find @ given f and n. The
challenge of interface reconstruction is determining n.

Weymouth & Yue (2010) propose a second-order no-inversion VOF interface reconstruc-
tion algorithm (NIVIRA) which determines the interface normal n based ona 3 x 3 x 3
region surrounding the grid cell. No inversion contrasts with other methods which require
repeated generation and inversion of trial interfaces. The first step of NIVIRA is to determine
the dominant direction of the interface. A first estimate of the interface normal, h = -V f is
calculated using second-order central difference and the largest component of i determines
the dominant direction of the interface. Once the dominate direction is identified, the void
fraction is summed over groups of three cells in that direction to go from a 3 x 3 X 3 array of
void fractions to a 3 X 3 array of heights in the dominate direction. By selecting forward or
backward differencing based on the height function in the center cell, Weymouth & Yue
(2010) show that one is always able to obtain a second-order accurate interface normal n,
meaning any linear interface would be reconstructed exactly.

This interface reconstruction is repeated each operator-split step of cVOF based on
the previous f(@~1 to determine n“~" and o(“~D. For each flux term, the upwind
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interface is transported with the velocity on the face of the cell, from which the flux of
dark fluid can be easily calculated geometrically (e.g., figure 2-2). The upwind nature of
this approach guarantees flux terms are conservative, satisfying the first requirement for
volume-conservation.

2.2.2 Treatment of the dilation term

In addition to NIVIRA to efficiently calculate interface normals to obtain the flux terms, the
second development by Weymouth & Yue (2010) is a treatment of the dilation term which
satisfies requirements 2 and 3 of a volume-conservative operator-split advection scheme. To
start, Weymouth & Yue (2010) propose that ¢(x) within a cell will be approximated by a
single value ¢. In this case, (2.37) becomes

9
S (D= ) = Fajp - Faap+ cSIAQ for del. .. (240
Xy

where 0ug/0xq = (Ugs1/2 — Ug-1/2)/Ax. Because duy/0x, is calculated using the same
scheme MAC uses for V - uin (2.9b) and (2.10b), we guarantee that (at least to the precision
of the Poisson solver),

4 ouy

—=0. (2.41)
e 0x4
The conclusion is that only a ¢ that remains constant throughout the operator-split steps will
lead to a dilation term that will sum to zero, satisfying requirement 2.

If ¢ must remain constant throughout the operator-split steps, for an explicit scheme it
should only be a function of £ available at the start of the operator-split steps. Weymouth
& Yue (2010) show how naive approaches like ¢ = f )0, or 1 will lead to over or under

filling. Instead, Weymouth & Yue (2010) propose using a cell center value,

it fO s 172
¢ = _ , (2.42)
0 otherwise
which they prove, along with the Courant-like timestep restriction
N "y
At —1|<C 2.13
; A (2.13)

where C = 1/2, guarantees that no over or under filling can take place.

2.2.3 Suppression of spurious wisps

The cVOF method described so far conserves volume to machine precision; however, the
calculation of fluxes using interface reconstruction often does not fully fill or empty a cell
due to the finite precision of the geometric calculations (Baraldi ez al., 2014). This creates
cells with f very close but not equal to 0 or 1, referred to as wisps. To suppress these
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wisps, we introduce a zero-threshold value ey on VOF field (typically, e = 10712). After
performing the ./ operator-split steps of (2.40) to obtain £, the following filter is applied
to obtain the final new VOF field,

1 it 1-fY <e
f=lo it fMN<e (2.43)
F) otherwise

In addition to suppressing wisps, this filter also addresses a practical challenge that
arises from using a floating-point representation of f. Due to the relative resolution of
floating-point arithmetic, operations on nearly full cells (f = 1) will have larger precision
errors than nearly empty cells (f =~ 0). This creates a discrepancy between operations on
fand 1 — f, despite the choice of light/dark fluid being arbitrary. € larger than machine
epsilon (O(107'9) for double precision) ensures that the nature of machine-precision-related
errors are similar regardless of the choice of light/dark fluid.

2.3 Bubble identification using connected component
labeling

With the DNS described above, we have access to the void fraction fl’; p of each cell at each

simulation time step ¢X, which is a discrete representation of the color function ¢(x, t¥). This
is an Eulerian field describing the location of air and water, but for analysis we want to group
the air into contiguous regions, i.e., bubbles. At some snapshot in time ¢" corresponding
to some simulation time step ¥, we want to identify the set of bubbles %" and mark the
air associated with each with a label [ € {1... M"}, where M" is the number of bubbles
at ". Note that we have switched from a time index k corresponding to increments of the
simulation by At to a time index n corresponding to increments of time intervals between
snapshots Atg, i.e., "1 = " + Ar,. This notation will be useful in Chapter 3 when we
introduce tracking bubbles through time between snapshots. This section addresses the
prerequisite step of identifying bubbles at a single snapshot.

To develop a bubble labeling scheme, we first assume that the air in each cell can only
be associated with a single bubble. This allows bubble labeling to be posed as connected-
component labeling (CCL), which is ubiquitous in the field of computer vision. For CCL
on large three-dimensional domains distributed across multiple nodes and processors, we
develop a C++ library which uses equivalent label sets (He er al., 2007) to store connection
information on a single processor, and then the methods described by Harrison et al. (2011)
and Iverson et al. (2015) to determine connections across parallel processors and assign
globally unique labels. We also develop a simpler Python implementation, blobid-python*,
for post processing when massive parallelization is not necessary. We find the computational
cost of CCL is generally trivial compared to the DNS flow solver. Thus, rather than the
details of the CCL algorithm, the focus of this section is on how CCL can be adapted from
computer vision to bubble labeling.

4https ://github.com/dgaylo/blobid-python

38


https://github.com/dgaylo/blobid-python

To apply CCL to bubble labeling, we must specify two types of criteria. First, we must
define which grid cells are “object” cells, i.e., cells that will eventually be part of a bubble.
Second, we must define a way to determine if two adjacent object cells are connected.
While the accuracy of bubble labeling is fundamentally limited by the flow solver’s discrete
representation of the air-water flow (i.e., grid size A), recent work has shown that the choice
of objectivity and connectivity criteria also affect accuracy (Hendrickson et al., 2020; Chan
etal.,2021a).

2.3.1 Objectivity criteria

The first step of bubble labeling is to determine which grid cells are to be part of a bubble.
Chan et al. (2021a) focus on modifying objectivity criteria as a way to improve the accuracy
of bubble labeling. Using the convention that ", = 1 corresponds to a cell filled with air at
time ¢"* and fl’; P = 0 corresponds to a cell ﬁlled] with water, the simplest criteria is that the
amount of air in the cell must exceed a threshold value ¢.:

> de. (2.44)

Recalling the zero-threshold filter (2.43), any ¢. < €y will identify all air in the simulation
as part of a bubble. A challenge with a small ¢.. (e.g., ¢. ~ 10712) is that it causes the wisps
discussed in section 2.2.3 to be identified as part of bubbles. While a wisp connected to
a real bubble has a negligible effect on the total volume, Chan et al. (2021a) show wisps
can cause multiple bubbles to be artificially linked, significantly affecting the bubble size
distribution. One option to suppress wisp bridging is to increase ¢, (e.g., ¢. = 0.5); however,
this causes cells on the surfaces of a real bubble to be excluded, reducing the total volume.
A large ¢. means that a significant portion of air will not be assigned to a bubble. This is a
particular issue for volume-based bubble tracking (see Chapter 3), as it means we will get an
incomplete description of the evolution of the bubble population.

Chan et al. (2021a) propose a different objectivity criteria to allow suppression of wisp
bridging while reducing unassigned air compared to large ¢.. In addition to (2.44), at least
one of the cell’s six neighbor cells must have a void fraction that exceeds a second threshold
value ¢, -

[ k> ¢C] A {[ k> ¢c,m] v [fi’iljk > ¢c,m] v [ ek > ¢c,M] Ve } - (245

Chan et al. (2021a) propose ¢. = 0 and ¢, ,, = 0.5. This reduces the volume lost on the
surfaces of bubbles, as any cell with air that is within one grid cell of a mostly full cell will
be added to a bubble.

2.3.2 Connectivity criteria

In addition to whether a grid cell is an object cell or not, CCL needs a criteria for whether
pairs of object cells are connected. To start, we specify that only adjacent cells can be
connected. Depending on whether diagonal cells are included, a cell on a three-dimensional
Cartesian grid can have either 6 or 26 adjacent cells. Figure 2-3 illustrates this for two
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Figure 2-3: Illustration of (a) 4-connectivity and (b) 8-connectivity for a two-dimensional grid,
where “X” is the object cell and the other cells are those that would be considered adjacent.

AL A A4k

@n,>0;n,>0 b)n, <0;n, >0 ©ny<0;n, <0 dn,>0,n,<0

Figure 2-4: The four different configurations ICL considers for the sign of interface normals in two
adjacent grid cells. In (a)—(c) ICL considers the two cells connected. In (d) the normals are opposed
and ICL does not consider the two cells connected.

dimensions, where a cell can have either 4 or 8 adjacent cells. For bubble identification we
do not include diagonal cells and use 6-connectedness. Without any additional criteria, an
object cell will be considered connected to any object cell among its 6 neighbors.

A challenge with the simple connectivity criteria is that bubbles are often merged
together if they have interfaces separated by < 2A. This artificial merging can be reduced by
sharpening the VOF field. The Informed Component Labeling algorithm (ICL) proposed
by Hendrickson et al. (2020) uses NIVIRA developed by Weymouth & Yue (2010) (see
description in section 2.2.1) to obtain piecewise linear interface reconstruction in each grid
cell. As illustrated in figure 2-4, ICL adds an additional connectivity criteria: adjacent
object cells are only considered connected if their interface normals are not opposed. Given
ICL only uses the sign of the interface normal, one could be tempted to use a less accurate
method to approximate the interface normals, such as i = =V f calculated using central
differencing. However, we will show this notably reduces the accuracy of ICL.

2.3.3 Comparison of bubble labeling schemes

To evaluate different bubble labeling schemes, we consider 400 snapshots of the VOF field
near the free surface from an illustrative simulation® which has air bubbles in water near a
free surface. We consider the original VOF field with uniform grid size A, as well as the
field downsampled by averaging eight grid cells into one to give a larger grid size A’ = 2A.
Figure 2-5 shows an example of the two different fields.
We consider three different bubble labeling schemes:
* The method proposed by Chan et al. (2021a), where (2.45) is used (¢. = 0 and ¢, = 0.5)
for the object criteria and no additional connectivity criteria is imposed (THRESH).

SDNS of forced FST simulation at Fr? = 1.2, We = oo, as described in section 4.3
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Figure 2-5: Slice of the VOF field from a snapshot of bubbles near an air entraining free surface at

(a) Original, 2567 x 128

(b) Downsampled, 1282 x 64

two different resolutions. Air is white and water is black.
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Figure 2-6: Bubble size distributions N (a) calculated using different bubble identification methods
for (a) the original grid and (b) the downsampled grid. As reference, (- - - -) shows Nf(a), the
average result of THRESH and ICL-NIVIRA on the original grid.

* The method proposed by Hendrickson et al. (2020), where (2.44) is used (¢, = 0) for the
object criteria and interface normals, calculated with NIVIRA, are used for an additional
connectivity criteria (ICL-NIVIRA).

* The same method proposed by Hendrickson et al. (2020), but with central differencing
rather than NIVIRA used to calculate the normals (ICL-CD).

Using each of these methods we identify bubbles in each of the 400 snapshots using

the bolbid-python library. From a bubble’s volume v, we calculate an effective radius

a=(3v/ 471)1/ 3 and then bin the results to determine the average bubble size distribution

N(a), shown in figure 2-6.

Suppression of wisp bridging

First, we compare THRESH and ICL-NIVIRA at the original resolution. Especially for
a < 5A we see that ICL-NIVIRA identifies more bubbles of a given radius than THRESH. In
this simulation, there is a lot of air near the free surface. ICL-NIVIRA’s stricter connectivity
criteria implies more of this air is in bubbles, disconnected from the bulk region of air above
the free surface (the ‘sky’). THRESH’s less strict connectivity criteria implies more of the
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air is still connected to the sky. Chan et al. (2021a) suggest that excluding wisps using a
large ¢. or ¢, in the objectivity criteria is necessary to suppress wisp bridging and robustly
separate bubbles from the sky; however, our results show that ICL (which uses ¢, = 0)
separates more bubbles from the sky. The orientation of the interface normal for wisps is
essentially random, so rather than a single large bridging structure, ICL identifies wisps as
many small bubbles. Thus, wisps with ICL lead to many small bubbles of radius a < A
which are easily excluded from analysis.

Effect of grid resolution

We now consider the accuracy of ICL-NIVIRA versus THRESH. Because this is real
simulation data, we do not have a given bubble size distribution to use as truth. For the
original grid, we note that both ICL-NIVIRA and THRESH give fairly similar values for
N(a) across the a/A range we consider, and almost identical values for a > 5A. Based on
this, we treat Ne.s(a), the average of the ICL-NIVIRA and THRESH N (a)s, as the reference
“truth” for comparison. Against this reference, we consider the accuracy of ICL-NIVIRA
versus THRESH on the down-sampled courser grid (A" = 2A). Figure 2-6 shows that
THRESH consistently under predicts the number of bubbles by roughly a factor of two.
This means that as the resolution goes down, more bubbles are incorrectly connected to
the sky. The ratio of N(a) predicted by THRESH and N,.¢(a) is consistent across bubble
sizes, meaning the probability that THRESH will erroneously link a bubble to the sky is
independent of the bubble’s size.

For ICL-NIVIRA, we see that there is very little error on the down-sampled grid for
bubbles @ > 3A’. Recall that NIVIRA produces a second-order piece-wise linear interface
based on a 3 X 3 x 3 stencil. For roughly spherical bubbles with radii larger than three times
the grid size, this will produce very accurate interface orientations. Figure 2-6 confirms
that, as intended by Hendrickson ef al. (2020), ICL-NIVIRA can accurately distinguish
sufficiently sized closely spaced bubbles using interface reconstruction. For bubbles a < 3A’
we see ICL-NIVIRA over predicts the number of bubbles, though by a factor similar to how
THRESH under predicts bubbles of all sizes.

Effect of less accurate interface reconstruction on ICL

Finally, we highlight that the accuracy we see here for ICL-NIVIRA is closely tied to the
accuracy of the NIVIRA reconstruction method. In Figure 2-6 we also consider ICL-CD,
where simple central differencing is used instead. Weymouth & Yue (2010) discuss how
central differencing in this case is less than second order accurate, and figure 2-6 shows that
using this less than second order accurate method significantly reduces the overall accuracy
of ICL. In addition to a reversion to the THRESH behavior of linking bubbles to the sky
as resolution decreases, we also see some error in the large bubbles at the full resolution.
When using ICL, one should make sure the interface reconstruction method is strictly second
order accurate, as is the case with NIVIRA. Additionally, some caution should be taken for
bubbles with radii near the grid size, as the piece-wise linear representation of the interface
may be too course.
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Chapter 3

Eulerian Label Advection Method for
Volume-Conservative Bubble Tracking

As discussed in Chapter 1, multiple bubble evolution mechanisms are present and may be
relevant to the bubble population beneath an entraining free surface. Measurements of the
bubble population alone only provide the net effect of all these mechanisms, limiting what
can be elucidated about any individual mechanism. To study these evolution mechanisms, we
require methods to quantify individual evolution mechanisms within the bubble population.
This is achieved with bubble tracking, which identifies the individual events related to each
evolution mechanisms. While our interest in this work is bubbles, we note that the methods
derived in this chapter are equally applicable to droplets.

Key results from this chapter are summarized in “An Eulerian label advection method for
conservative volume-based tracking of bubbles/droplets” by Gaylo, Hendrickson & Yue
(2022). Here we provide more details, particularly on how the method is used to quantify
individual evolution mechanisms. An implementation of the method is available in the
flexELA! library.

3.1 Introduction

For bubble tracking, simulations have an advantage over experiments in that all (resolved)
properties of the flow are readily available, relevant here, the velocity field u(x, ) and the
color function field c(x, ¢). Still, bubble tracking is a challenge in simulations. Formally,
a bubble can be defined as a volume enclosed by a continuous surface representing the
interface between air (¢ = 1) and water (¢ = 0).> Neglecting dissolution, this surface is
material, so its evolution (and thus bubble evolution) can be obtained from u(x, 7). However,
the evolution of the surface is a challenge because numerical methods such as volume of
fluid or level set do not explicitly define this interface. This lack of an explicit interface
creates two challenges in regard to bubble tracking. The first challenge is the need to identify
individual bubbles at an instant in time (snapshot) based on the discretized representation

1https://github.com/dgaylo/flexELA
2This chapter uses the convention that air is dark’ fluid, the opposite of the convention used in section 2.1.
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of the color function field. The second challenge is to track how these individual bubbles
evolve between two adjacent snapshots. The first challenge is, more broadly, the process
of connected-component labeling (CCL), as discussed in section 2.3. In this chapter, we
will focus on the second challenge of tracking the evolution of individual bubbles. To this
end, we will take the bubble identification provided by CCL as a given and focus on the
accuracy of the tracking of these identified bubbles. Although the ultimate accuracy of
measured bubble evolution mechanisms depends on both the accuracy of CCL and tracking,
this approach avoids entangling these two challenges.

Recently, two methods for bubble tracking in numerical simulations have been proposed
(Chan et al., 2021a; Gao et al., 2021). Both methods can be classified as Lagrangian methods,
as their inputs from the simulation are Lagrangian integral quantities of bubbles, e.g., volume,
centroid, and total momentum. A limitation of both these methods is that they assume
that all events are binary, meaning events involve at most two bubbles from one snapshot
and one bubble from the other snapshot. Applied to air entraining flows, the Lagrangian
methods have had some success describing fragmentation away from the free surface (Gao
et al.,2021; Chan et al., 2021c¢); however, the near the free surface the Lagrangian methods
struggle. They are unable to accurately describe the high-arity evolution of large complex
air structures near the free surface. Application of the binary assumption to non-binary
events introduces erroneous creation/extinction events (Chan et al., 2021a). This is a serious
problem, as such error is inseparable from entrainment and degassing statistics. Although a
Lagrangian method could theoretically be extended to capture higher-arity events, it is not
practical computationally.

We pursue a different, Eulerian approach to bubble tracking. Unlike Lagrangian methods,
the available velocity field u(x, ¢) is used to determine the evolution of bubbles. Because an
Eulerian approach focuses on grid-level detail to describe bubble evolution, the complexity
of the formulation can be independent of the arity of the bubble-level events. In section 3.2
we develop a volume-based framework to describe the evolution of bubbles in terms of
the movement of air volume between bubbles. This volume-based tracking approach
uniquely describes the evolution of the bubble population through a volume-tracking matrix
(VTM), which can describe evolution regardless of the complexity. From this more general
description of bubble evolution, individual events (entrainment, degassing, fragmentation,
etc.) can be extracted. In section 3.3 we demonstrate that Lagrangian methods are unable to
uniquely provide the VITM. This is true even if a Lagrangian method were able to avoid the
binary assumption. In section 3.4 we build upon the volume-fraction fluxes provided by the
cVOF method (Weymouth & Yue, 2010) to create the Eulerian Label Advection method
(ELA), a volume-conservative numerical implementation of volume-based tracking. By
leveraging fluxes already calculated by cVOF, ELA minimizes additional computational cost.
In section 3.5 these results are validated using the canonical problem of bubbles fragmenting
in homogeneous isotropic turbulence (HIT).

3.2 Volume-based bubble tracking

Before going further, it is useful to define a mathematical framework to describe bubble
evolution. Consider that given a numerical approximation of the color function from a
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snapshot at time #”*, c(x,¢"), a CCL method provides a set of non-overlapping bubbles
B" ={1...M"}, where M" is the number of bubbles. The CCL method identifies these
bubbles by labeling the air withing each with a corresponding label / € 1... M". Some
CCL methods do not identify all air as being part of a bubble (see §2.3.1); so we define an
additional “bubble” with label [ = 0 containing all the (not necessarily contiguous) air not
otherwise assigned to a bubble. To represent the results of CCL, we define a vector color
function ¢”(x, ) with elements initially defined at time ¢* by

" " 1 if x € bubble! "
cr(x,t") = for 1e€0...M". (3.1
! 0 else

Rather than a single binary fluid color function describing if there is air or water at a location
x and time 7, we have split the air into separate immiscible fluids based on which bubble it
was in at time #"*. Equivalent to (2.8b), the evolution of ¢ must satisfy

oc"
ot

+u-Vc'=0. (3.2)

With inflow boundary conditions, not all air will have necessarily been in an identified
bubble at ¢, but this can be accounted for by adding a bubble (or bubbles) to %" and setting
the corresponding element(s) of ¢” at the boundaries. Because bubbles are defined to be
non-overlapping at ", all air is associated with a bubble, and ¢” is advected with the same u
as c, the following consistency requirement is true at all times and locations:

Z (X, 1) = c(x,1). (3.3)

l

For the air at any location x at a time ¢, ¢*(x, t) provides the bubble [/ € &" that contained
the particle at time . Thus, ¢ provides a complete Eulerian description of the flow of air.

3.2.1 A volume-tracking matrix description of bubble evolution

While ¢” provides a complete Eulerian description of the evolution of air over arbitrary
time, we are interested in the evolution of individual bubbles over snapshot intervals At;.
Describing the evolution in terms of individual bubbles implies a Lagrangian description,
where we follow individual bubbles rather than the entire field of air. Here we will show how
a matrix-based Lagrangian description of bubble evolution is obtainable from the previous
Eulerian description.

Integrating (3.2) over time (advection), the vector color function ¢"(x,t) originally
defined by (3.1) at time ¢, i.e., ¢"(x,1"), can be advanced in time to the next snapshot
™1 = " + Aty to give ¢ (x, 1"*1). At the next snapshot (#**!), a CCL method provides a new
set "1 = {0... M} of bubbles, from which we use (3.1) again to define a new vector
color function ¢™*!(x, t), with the initial value defined at #*! by

1 if bubbl
M (x, 1) = {O 11 X CDUBDIEM e me0.. . M (3.4)
else
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Based on ¢” and ¢"*!, both available at time #**!, the volume of dark fluid from a bubble
I € B" that ends up in a bubble m € %" is

It = / et (%) e (x 1) av, (3.5)
v

where V is the whole domain. Applying (3.4), this is equivalent to

I = / e (%) av (3.6)
xebubble m

For! =0...M" and m = 0...M"!, we define the matrix Q"~"*!) = {g,,;}, which
provides a complete description of the flow of air from bubbles %" to bubbles %"*!. Each
element g,,; in the matrix Qn—n+l) provides the (absolute) volume of air that transfers from
bubble / to bubble m over the interval 7" to 1.

We note that, based on ¢”, we can express the volume of all the bubbles at time " as a
vector v" of length M",

v = /c”(x, t)ydv. (3.7)
v
Recalling (3.3), the column and row sums of Q"~"*1) give the bubble volumes at " and
"1 respectively:

Dlam=vi (3.82)

m
D am =i (3.8b)

1

Normalizing the columns of Q"~*1) by v",

ami = qmi [V}, (3.9)

we define the volume-tracking matrix (VTM), A"="*D = {4 1. The VIM is a left
stochastic matrix,

Zaml -1, (3.10)

m

which describes the evolution of volume from bubbles %" to bubbles &"*! as

Vn+l — A(n—>n+1)vn . (311)
We note that if instead the rows of Q"~"*1) are normalized by v**', one gets a functionally
equivalent right stochastic matrix description of the reverse evolution.

It is important to note that, through the integration in (3.5), we have lost some information
about the flow of air on the particle level. Rather than a deterministic description of the flow
of air particles, each entry a,,; of the VTM can be interpreted as the probability a particle of
dark fluid is in bubble m € %B"*! at t"*! given that it was in bubble / € %" at ¢". This means
that, unlike ¢”, the VITM A"~ does not provide a complete Eulerian description of the
evolution of air. However, on the bubble level, each entry a,,; provides the (deterministic)
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proportion of the volume of bubble / € %" that ends up in bubble m € %"*!. Thus, the
VTM provides a complete Lagrangian description of the evolution of bubbles.

Given that the VTM is a left stochastic matrix, we can also consider the evolution of
bubbles over N snapshot intervals,

n
v”+N:[ [ A(”’_””“)]v”, (3.12)

m=n+N-1

This implies an effective VITM

(n—>n+N) 1_[ A(m—>m+1) (3.13)
m=n+N—-1

with an effective snapshot interval Az, . = NAt;. However, as the VIM does not provide a
complete Eulerian description, the effective VTM A is generally not equal to the true VTM
A with Atz increased to equal At . The computational cost of the tracking method we
develop in section 3.4 increases with Az, so matrix multiplication provides a cheaper way to
obtain long snapshot intervals; however, we find obtaining the true VTM with sufficient At
is not cost prohibitive. Although not used in this work, Appendix B discusses the tradeoft
between accuracy and cost when using VTM multiplication.

3.2.2 Extracting bubble evolution mechanism from the VTM

We now look at how bubble evolution mechanism can be identified by the VTM. Figure 3-1a
illustrates the VIM when one bubble fragments into m daughter bubbles. In general,
whenever there are multiple non-zero entries in a row of the VTM this means the volume
from one bubble is now in multiple bubbles, meaning fragmentation occurred. Figure 3-1b
illustrates the VITM when m bubbles coalesce into a single daughter bubble, the reverse
of fragmentation. Coalescence is identified when there are multiple non-zero entries in a
column of the VTM.

For entrainment and degassing, we first note that from the perspective of the VTM the
bulk region of air above the free surface (the “sky”) is treated just like a bubble. Thus,
entrainment is simply fragmentation of the “sky” bubble and degassing is coalescence of
with the “sky” bubble. This is illustrated in figure 3-1c. The VIM entry a;; represents air
that stayed in the sky. Each non-zero entry in the same column represents an entrainment
event, and each non-zero entry in the same row represents a degassing event.

Figure 3-2 shows a real example from the simulation in §3.5. Based on the first column
of A+ "we see that the majority of the volume from the parent with label 1 at time ¢”
went to the child with label 4 at time #**!, apart from a small portion that went to child 3.
For clarity, under-resolved bubbles have been excluded, causing the first column not sum to
1, cf. (3.10). Based on the second column, the volume from parent 2 went to three different
children, 1, 2, and 3. Based on the third column, all the volume from parent 3 went to
child 5. The events described by this VITM are complex in two ways: there is a non-binary
fragmentation event, and both fragmentation and coalescence occurred to form child 3.
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Figure 3-1: Tllustration of bubble evolutions and the associated VTM equation v'*! = Av", expanded
to show each term. (a) One bubble fragments into m bubbles. (b) m bubbles coalesce into a single
bubble. (c) One bubble is entrained (red) and two bubbles are degassed (green), along with other
processes.
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Figure 3-2: The f = 0.5 iso-surface from two snapshots of a subset of a simulation (see §3.5 for
details) and the corresponding part of the VIM extracted using ELA (described in §3.4). Grid cells
are highlighted corresponding to the label assigned by the CCL method. Note that an iso-surface
is itself a CCL method, which does not necessarily align with the chosen method. 3 resolved
parent bubbles (a) have their volume distributed among 5 resolved child bubbles (b). ELA gives the
associated VTM (c).
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Figure 3-3: Sketch of (a) Lagrangian-based tracking and (b) Eulerian-based tracking methods to
answer how much volume from a bubble labeled / at #* ended up in a bubble labeled m at "+ = " +T.

3.3 Limitations of Lagrangian-based tracking

Previous methods for bubble tracking (Chan ez al., 2021a; Gao et al., 2021) can be categorized
as Lagrangian-based methods. Figure 3-3a illustrates how Lagrangian-based tracking works.
At each snapshot interval ", they use the results from CCL to calculate Lagrangian properties
of bubbles. In addition to bubble volume (3.7), this could include bubble centroid,

1
X = = /c;’ (x,")xdV, (3.14)
A

or more generally any integral quantity over a bubble calculated at the snapshot interval
t". From such bubble properties at two successive snapshots, the methods seek to solve an
inverse problem to find a possible evolutionary path between the two snapshots. This inverse
problem can be solved through physical and numerical constraints (Chan et al., 2021a)
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or by minimizing a prescribed error function (Gao et al., 2021). Because the Lagrangian
data for bubbles is typically very small compared to any Eulerian field, Lagrangian-based
tracking is often done as part of post-processing. During the simulation the Lagrangian
bubble properties are recorded then later post-processed. The two limitations of Lagrangian
methods come from the fact that they are trying to solve an inverse problem.

3.3.1 Computational complexity

The first problem with the inverse problem is how the cost of the methods scales with the
complexity of the evolution of the bubbles. For a simple example, first consider bubble
evolution where bubbles only translate and there is no coalescence or fragmentation. For
M initial bubbles, there are M! possible solutions to the inverse problem. If instead each
bubble at the first snapshot fragments into two bubbles, there are now (2M)! possible
solutions. Generalizing, if all the bubbles fragment into n daughter bubbles, the possible
solutions are (nM)!. This simplified example illustrates the super-polynomial complexity of
Lagrangian methods as the complexity of the bubble evolution (illustrated by ») increases.
Lagrangian methods typically assume that all events are binary (n = 2), where either one
bubble fragments into two or two bubbles coalesce into one. Although both Gao et al. (2021)
and Chan et al. (2021a) both note that their methods are theoretically extendable to identify
non-binary events, the underlying scaling makes it challenging.

Recently Basak et al. (2026) made some progress extending the Lagrangian method by
Gao et al. (2021) to non-binary events, but this is done by assuming only simple non-binary
events, where one bubble fragments into many (figure 3-1a) or many coalesce into one
(figure 3-1b). Their method cannot handle complex events involving both fragmentation and
coalescence (e.g., figure 3-2).

3.3.2 Cycle generation leads to non-unique solutions

In addition to computational complexity, a more fundamental problem with Lagrangian-based
tracking methods is that they cannot always provide enough information to determine a unique
solution to the VTM. This is because, rather than tracking air volume, Lagrangian-based
methods track bubbles. To make this distinction clear, consider the case where two large
bubbles of volume v} = v7 exchange two smaller bubbles of volume 0.05v] each over a time

1 2
T, as shown in figure 3-4. In the form of (3.11), the correct VIM for this evolution is:

Vn+1 P
1 — 1
i) i)

Lagrangian-based methods seek to identify a solution to which bubbles at #* contributed
to a bubble at #"*! based only on the information available at #* and #**!. In terms of our
VTM description, they seek to identify which entries of Q"""*!) are non-zero. However,
identifying non-zero elements is insufficient to obtain a unique solution. Suppose that a
Lagrangian-based method correctly identifies the non-zero elements. Applying volume

=V

0.95 0.05
0.05 0.95
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Figure 3-4: Illustration of two bubbles of equal volume exchanging 5% of their volume over a time
T less than the snapshot interval Atg. The vector color function ¢” (X, f) is shown as blue where
c'f(x,t) = 1 and green where ¢ (x, 1) = 1.

conservation using (3.10) gives the set of equations,

yit ai (I —an)| v
{‘%H} - [(1 —a) an ] {Vﬁ} ’ (3.16)
which does not have a unique solution.

For a generalized explanation of why some VTMs cannot be solved based only on their
non-zero entries and volume conservation, it is useful to use graph theory. The evolution of
bubbles over a snapshot interval can be described as a graph where the nodes are all bubbles
present at " and "+, {%", B™*'}, and the edges are the non-zero elements of Q" ~"+1),
Each element value g;; represents the flow of volume (i.e., current) along the edge. Any
cycle in the graph allows a loop current, introducing a null space in the solution for the
currents g;;. If these cycles exist in the non-zero elements of Q=n+1) "3 unique solution is
not obtainable without additional information. In practice, a Lagrangian-based method used
for identifying non-zero elements my implicitly disallow cycles, however this only masks the
problem. For (3.16), such a method would pick the solution a;; = a>; = 1 (or 0), missing
the exchange of volume.

3.3.3 Quantifying cycle generation in two-dimensional vortical ex-
change

To illustrate the challenge of bubble tracking when complex interactions are present, we
consider a flow similar to the conceptual one shown in figure 3-4. Consider two circular
bubbles of radius a whose centers are both a distance L from the center of a forced vortex of
radius R and rotation Q, giving an angular velocity field vy (r) as a function of the radial
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Figure 3-5: Evolution of the f = 0.5 iso-surface in the two-dimensional vortical exchange simulation.

distance r from the vortex center,
vo(r) =QarH(R —r), (3.17)

where H is the Heaviside step function. The vortex rips volume from one bubble, creating
smaller bubbles which are then transferred to the other bubble. The time it takes for this
exchange of volume gives the characteristic time 7 = 1/Q. As discussed in §3.3.2, if
Aty > T, cycles are formed which prevent a unique solution using previous methods. Here,
we perform a two-dimensional simulation of L/R = 6/5 and a/R = 1/2 with resolution
Ax = R/32 over 0 < t/T < 8 and study the effect of Az,/T on cycle production. To obtain
the VITM we use the Eulerian-based tracking method that will be introduced in §3.4, which is
robust to the presence of cycles. Figure (3-5) shows the evolution of the f = 0.5 isosurface.

To avoid inflating the count of cycles by including under-resolved events, we remove
columns of the VTM A ("—7+1) relating to under-resolved parent bubbles, v < vies 2p, as well
as rows relating to under-resolved child bubbles, v’}” < Vres, 2D, Where Vyeg op = n(2Ax)2.

After removing under-resolved events, we generate a matrix B"~"*1) by removing all
elements of the VTM A "="*1) that are not involved in a cycle. This is achieved by iteratively
setting any element to zero if it is the only non-zero entry in a row or column, until no such
cases exist. The proportion of the (resolved) volume of dark fluid involved in cycles can then
be written 5 [B(n—>n+l) n]
v
n _
N 3 [A(n—>n+1)vn] ’

Figure 3-6 shows there is no cycle production for Aty < T, a jump in cycle production at
Aty ~ T, and all volume is involved in a cycle for Aty > T. Thus, unless Aty < T, previous
tracking methods would be unable to provide unique solutions to the flow of volume between
bubbles.

(3.18)
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Figure 3-6: Statistics for C", the proportion of total volume involved in cycles, using different
snapshot intervals for the vortical exchange simulation over 0 < ¢/T < 6.

3.4 Volume-conservative Eulerian-based tracking using
Eulerian label advection

As section 3.3 shows, to reliably obtain the VTM, we need more information than just the
Lagrangian properties of bubbles at " and #"*!. Based on the evolution equation (3.2) from
which the VTM is derived, an obvious source for additional information is the Eulerian
velocity field u during ¢ € (#*,¢"*'). While some have proposed modifications to the
Lagrangian approach which use u to explicitly provide the non-zero entries of the VIM
(Rubel & Owkes, 2019; Langlois et al., 2016), there is still the uniqueness problem.

Here we propose a novel approach where we solve (3.2) directly. As opposed to
Lagrangian methods, the use of the velocity field u through (3.2) gives a fully Eulerian-based
tracking method which, along with (3.5), allows direct calculation of the VTM Alrontl)
as outlined in Figure 3-3b. For a numerical advection scheme of ¢” to provide an accurate
VTM, we identify two core requirements. The first is that, for the VTM to describe the
movement of air, the velocity used to advect the scalar color function ¢ in (2.2) must be
exactly equal to the velocity used to advect ¢*. As discussed previously, this leads to the
consistency requirement (3.3). The second requirement is that, as described by (3.2), each
component ¢} of ¢" must be conserved, ideally to machine precision.

In this section we describe such an advection scheme, the Eulerian label advection
(ELA) method. The numerical representation of the vector color function is based on the
Volume-of-Fluid (VOF) representation of the scalar color function. The advection scheme
itself is based on the conservative Volume-of-Fluid (cVOF) method of Weymouth & Yue
(2010). Through its close link to cVOF, ELA provides a consistent advection scheme, which
we will show maintains the volume-conservative nature of that approach.
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3.4.1 Discretizing the vector color function

Before deriving ELA to solve (3.2), we define a discretization of the vector color function
¢ (x, t) by integrating it over each cell Q;,

/Qijk c¢"(x,1) dV

n =
i) = =g —— (3.19)

We will call this the vector source fraction field. It is a vector equivalent to f;;x defined by
(2.14). Recall that the vector color function ¢”(x, ¢) is initially defined based on CCL at time
1", as described by (3.1). Noting that point x is only in a bubble [ if the point x is also in air
(c(x,t") = 1), we can integrate (3.1) in the same way as (3.19) to obtain

(s))iji (") = c(x,t")dV for [€0...M". (3.20)

AQ;jk /xe[g,»jk N bubble /]

We can simplify this definition by making an assumption about the CCL method used to
determine if x € bubble /. Typical CCL algorithms assign all of the air in a cell to a single
bubble. Thus, the integral in the previous equation would be equal to either zero or the
volume of air in the cell. Recalling (2.14), this gives

- (") if Qi € bubble
(M) (") = () Af Qe bubble L e @)
0 otherwise

where ©;;; € bubble / simply means the CCL algorithm identified the cell ijk as part of
bubble /. Because bubbles are defined to be non-overlapping, we note that at ¢ = " no more
than one element of sfj , (") can be non-zero.

With (3.21), at t = ¢" we are able to initialize the vector source fraction field s:.’j (")
based on the VOF field f;;x(¢") and the results of a CCL algorithm. This definition of
s:?j. . (") can also be shown to satisfy the consistency requirement. Integrating (3.3) in the
same way as (3.19) we obtain a discretized consistency requirement,

D i) = fipr (). (3.22)

l

Recalling bubbles are non-overlapping and that all air is associated with a bubble, it is clear
that (3.21) gives an initial s?jk (#") which satisfies (3.22).

3.4.2 ELA method for evolving the vector source fraction

We now seek a consistent and volume-conservative numerical advection scheme to model
(3.2). The derivation will closely follow the cVOF derivation (Weymouth & Yue, 2010)
presented in section 2.2. First, we integrate (3.2) over a cell Q,;; and apply divergence
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theorem to obtain

0
—/ c" dV+jI§ cu, dS :/ ¢"(V-u)dv. (3.23)
o Qijk 0Qijk Qijk

As in section 2.2, 0 Q; is the surface of the cell and u,, is the velocity normal to the surface
(using the convention that u,, > 0 indicates flow out of the cell). For conciseness, we
consider a single cell and drop the “ijk” subscripts. Writing in terms of s” using (3.19) and
rearranging,
os"
ot

where the vector F,,.; describes the net flux of s” out of 2. As we discretize (3.24) in time,
to avoid confusion of the snapshot index n based on A¢; and the fluid-solver time index k
based on At, we will omit n for the rest of this section, e.g., sk = §"(15).

AQ

= —Fpp + / ¢ (V-u) dv, (3.24)
Q

As discussed in section 2.2, (Weymouth & Yue, 2010) provide an operator-split method
to solve the evolution of ¢ (represented by the VOF field f). For convince, the equation to
go from the VOF field f* at time % to f**! at #**! = t* + At in an /" dimensional domain is
repeated here,

AQ 9
S (D= F9D) = Fanap = Faap +250AQ for del. . (240)
At 0xy

Recall that the scalar flux on the positive face (Fy41/2) and negative face (Fy_12) are
calculated using a second-order interface reconstruction based on (4~ (section 2.2.1) and
that the dilation term is approximated based on f(? (section 2.2.2). For ELA, we solve
(3.24) using a similar operator-split equation,

AQ 9
S (s =8 = Fuarjp - Faoapp +85-2AQ for del... i, (3.25)
At 0xy

where Fy,1/2 and F;_;, are vector flux terms on the positive and negative faces and € is a
vector dilation term. As discussed in section 3.2, consistency arises from the fact that ¢” is
advected with the same u as ¢. From this, it is natural that each vector flux term should itself
be consistent with the associated scalar flux terms in (2.40), e.g.,

Z(Fl)d+l/2 =Fyp2. (3.26)
7

If we further require that the vector dilation term is consistent with the scalar dilation term,

Z(g,) =z, (3.27)
l

summing (3.25) shows that after each operator-split step the vector source field is consistent

with the VOF field,
D)@ = (3.28)
l
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By extension, (3.22) will always be satisfied. Thus, any operator-split advection scheme for
s of the form (3.25) which satisfies (3.26) and (3.27) will be consistent with cVOF, or any
VOF method that can be written in the same form as (2.40).

In addition to consistency and conservation, it is important that ELA is computationally
efficient. (3.25) is a vector equation which implies solving as many advection equations as
there are bubbles. While perhaps theoretically possible, applying approaches like interface
reconstruction for each individual equation would be computationally infeasible. Instead,
we design ELA to use as much information as possible from ¢VOF to calculate F 4,1/, and €.
For convenience, we define the normalized vector source fraction § as

S]

ZiSi,

which has the property >};5; = 1. An explicit conservative upwind scheme is used to
determine the composition of the air flux based on the previous operator-split step’s s(¢~1)
and the scalar flux F' from cVOF:

(3.29)

§1 =

Jd-1) .
S if Fd+1/2 >0
F =F -{ g+l , 3.30a
i/ “”2{§i” if  Faeip <0 (3-300)
Jd-1) .
S if Fd—l/Z >0
Fo1p=Fipq1pn-34._ . 3.30b
d-1/2 = Fa-1)2 {gfill) ity <0 ( )

To describe the vector dilation term based on the scalar dilation term ¢ from cVOF,
c=¢80, (3.31)

For volume conservation, it is critical that ¢ remain the same throughout the operator-split
steps, so (similar to cVOF) we base it on the initial s,

ELA volume conservation

Recall the three requirements Weymouth & Yue (2010) identify for a volume-conservative
(to machine precision) operator-split advection scheme:

1. flux terms are conservative,
2. the dilation terms sum to zero, and
3. there is clipping due to over or under filling at any step.

For the flux terms, ELA satisfies (3.26), so, by extension from cVOF, the total flux of s is
conservative. Additionally, the use of upwinding in (3.30) guarantees that the flux of each
individual component of s is conservative. For the dilation term, a similar argument is true.
ELA satisfies (3.27) so, by extension from cVOF, the total of the dilation terms sums to
zero. Because each component of € remains constant, each individual element of the dilation
terms also sums to zero. What remains is to prove requirement 3.

Because ELA is consistent with cVOF, (3.28) is true at any step. As proven by Weymouth
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& Yue (2010), cVOF with the Courant restriction

N
At Z
d=1

guarantees 0 < (49 < [ at any step. By extension, ELA satisfies

<C (2.13)

Ug
A)Cd

0< Y ()<, (3.32)
[

establishing that the sum of s(@) cannot over or under fill. However, to show ELA is volume
conservative, we must show that individual components cannot over or under fill, i.e.,

0<(s)?@ <1 (3.33)

for all . First, we note that, given (3.32) is true, proving 0 < (s;)® proves (3.33). In
Appendix C, by considering all possible combinations of the sign of the velocity on either
face, we prove that 0 < (s;)(@ for all [ provided the Courant restriction (2.13) is true.

While based on the proof by Weymouth & Yue (2010), the proof in Appendix C is not
a trivial extension because, unlike with cVOF, it is not guaranteed the flux in on one side
of a cell replaces the flux out on the other side, as they could be composed of different
elements of s. Surprisingly, we still find that the Courant restriction required for ELA volume
conservation is no more restrictive than that for cVOF volume conservation. Meaning that
no change in At is needed to use ELA with cVOF versus cVOF alone.

Finite precision considerations

The ELA algorithm we have described so far is exactly volume conservative and consistent
with cVOF. In practice, floating point calculations have finite precision, so a few modifications
are useful. First, finite precision leads to rounding errors, which may cause an element
(sl)(d) that should go to zero to be either slightly above or below zero. To deal with this,
after calculating each step in (3.25), the following filter is applied,

(@)
(s)@ {0 it (3™ < €man . (3.34)

(sl)(d) otherwise

Here, emach. 1s defined to be the smallest value such that with finite precision 1 + €pach, # 1.
With this filter, can say that the consistency condition (3.28) is true o machine precision.
Even without the above filter, finite precision means that (3.28) will not be exactly true.
While the error is on the order of machine precision, it can be useful to further minimize this
error as much of the volume conservation proof relies on (3.28). To this end, we can apply
the following filter after (3.34),
s pldgld) (3.35)

The performance of ELA with and without this filter are presented in §3.5.2.
Finally, we recall that cVOF implementations often include a filter (2.43) designed to
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suppress spurious whips and ensure symmetry between operations on f and 1 — f. This
introduces a zero-threshold value €, and a volume conservation error of the same order of
magnitude. To ensure (3.28) is always true, as required for ELA volume conservation, s
must be similarly adjusted by the same €, at the end of the operator split steps:

sV if 1 - fU) < ep
=30 if fD<e . (3.36)
st otherwise

While neither cVOF nor ELA are strictly conservative if ey # 0, the total volume addition/loss
in s is equal to that in f. Therefore, ELA continues to satisfy the consistency requirement
and satisfies the necessarily weakened volume-conservation requirement in the sense that it
tracks all the air, including that artificially added/subtracted by (2.43).

3.4.3 Extracting the VTM from the vector source fraction

Using the method described in section 3.4.2 we are able to evolve the vector source fraction
s?j , (1) in time from its original definition at t = . We perform (3.25) at every simulation

time step Az until we reach the next snapshot interval #"*! = ¢ + At,. From this, we have the
discretized representation

1
/Qijk ¢(x, ") dV
AQ;jk

S () = (3.37)

To relate this to the VTM, we start by expanding (3.6) into a summation over all (non-
overlapping) cells in the domain,

Imi = ) / ch(x, ™) av. (3.38)

ijk Ukﬂbubblem

As done for (3.21), we assume the CCL algorithm assign all of the air in a cell to a single
bubble, giving

Gl = Z /c;l(x,z"“)dv. (3.39)
Q;jx€bubble m ¥ Qijk
Using (3.37), we have
gmi= . AQip (sl (") (3.40)
Q;jr€bubble m

After normalizing using (3.9), we obtain the VTM A"~
After obtaining A"~"*! we can use the same CCL results at /"*! used to determine
Q;x € bubble min (3.40) to define a new s’“rl with (3.19), and repeat the process of evolving

it using ELA and then extracting A”+1_’”+2. Thus, this method provides tracking information
throughout a simulation.
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3.5 Validation for three-dimensional bubble fragmenta-
tion in homogeneous isotropic turbulence

To verify and demonstrate the properties of ELA, we consider the canonical problem
of a low void-fraction distribution of air-bubbles in water (density ratio p,,/p, = 1000)
fragmented by strong homogeneous isotropic turbulence (HIT). We choose HIT as it is
spatially homogeneous, quasi-steady, and well understood, allowing simple measurement of
averaged turbulence properties, particularly the turbulent dissipation rate €. Additionally,
multi-phase HIT has been well studied experimentally (e.g., Qi et al., 2020; Martinez-Bazéan
et al., 1999a; Vejrazka et al., 2018) and serves as a building block for understanding
bubbly-flow near an air entraining free surface. Using this canonical problem, we verify that
ELA is volume conservative and quantify the abundance of loop currents. In Appendix B
this same simulation is used to demonstrate matrix multiplication and the associated trade-off
between cost and accuracy.

3.5.1 Simulation setup

We perform three-dimensional DNS on a triply periodic grid of 256°. For simplicity,
we consider the case where surface tension is negligible compared to the strength of
turbulence and set We = co. HIT is created and maintained using a linear forcing method
(Lundgren, 2003; Rosales & Meneveau, 2005) resulting in a turbulent Reynolds number
Re = ut  /ev = 200 and Kolmogorov scale  ~ Ax. After turbulence is initialized for one
phase, a population of spherical bubbles with radii between r,,;;, = 3Ax and 7,4, = 15Ax
following a r~'1%/3 power law is randomly distributed without overlap at ¢ = 0 such that the
void fraction is 1%. The simulations are performed using the cVOF method described in
section 2.2, with e = 10712 used for (2.43) and (3.36). We choose the Informed Component
Labeling (ICL) algorithm developed by Hendrickson ef al. (2020) as the CCL method to
provide ELA with contiguous bubbles because it is volume conservative, i.e., all dark fluid
is marked as part of a bubble.® This allows us to validate that ELA is volume conservative.

For fragmentation of bubbles in HIT, a characteristic time is t;, = 0.42 e VB3 r a3,
corresponding to the typical lifetime of the largest bubbles (Martinez-Bazan et al., 1999a).
We run our simulations over O < ¢/t;, < 2, over which we observe an increase from 215 to 588
resolved bubbles (defined as bubbles with a volume larger than v,es = 4/3n(1.5Ax)3). The
evolution of the bubble field is shown in figure 3-7 and the bubble size distribution is shown
in figure 3-8. We perform a series of otherwise identical runs using different 7 = At /1, (see
table 3-1). For the largest, we choose 7 = 0.1, consistent with recommendations by Chan
et al. (2021a). Figure 3-2 provides an event observed by ELA over this snapshot interval
and the corresponding tracking matrix from a subset of the domain.

3.5.2 Validating ELA volume conservation

Using ELA with the longest snapshot interval (7 = 0.1), we first seek to verify the conservative
nature of ELA. Following Weymouth & Yue (2010), a measure of the typical change in the

3For details on ICL including comparison to other CCL methods, see §2.3
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(b)t/tp, =1

Figure 3-7: Evolution of the f = 0.5 iso-surface in the three-dimensional HIT simulation (without
surface tension).
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Figure 3-8: Evolution of the bubble size distribution N () in the HIT simulation versus the expected
—10/3 power law. Note, only resolved bubbles (r/Ax > 1.5) are considered.

T =Aty/t, K = (Aty/At) Normalized with (3.35)?

Case La 0.1000 109.9 no
Case Lb 0.1000 109.9 yes
Case S1 0.0500 54.96 yes
Case S2 0.0250 27.50 yes
Case S3 0.0125 13.75 yes
Case S4 0.0063 6.870 yes
Case S5 0.0031 3.434 yes
Case S6 0.0016 1.717 yes

Table 3-1: Summary of different runs performed using the same flow but different ELA settings.
Note, the simulation time step Af is chosen dynamically as described in §2.1.2, so the average value
based on all snapshot intervals is reported for K.
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(L1)gLa / Vo (Change)grn  (L1)cvor / Vo (Change) .yor

Case La 82x107'%  -19x10712 57x107%  1.9x107°
Case Lb 22x10717 48x 1071 " "

Table 3-2: The L; and relative change metrics for volume conservation error separated into ELA
contribution and cVOF contribution for HIT simulations over O < ¢/f;, < 2 corresponding to T = 30
snapshot intervals. Note that the L; errors are per fluid solver step while relative change errors are
over the entire simulation (~ 3000 steps).

volume of dark fluid per simulation time step At is

~

1 -1

= v — v, (3.41)
n

(L1)evor =

I
[«

Here, TK is the total number of simulation time steps. The total relative change over the
entire simulation is

(Change) .yor = VTV;OVO : (3.42)
We define equivalent metrics for ELA based on the tracking matrices:
=
(L1)gra = TK ;) vl Al Dy L (3.43)
3 [VT - A(O_)T)VO]
(Change)gy o = (3.44)

v
By comparing the new volume predicted by the VTM to the new volume calculated from the
void fraction field, we measure any volume error in ELA separate from that related to cVOF.

The results for the simulations are shown in table 3-2. We first run ELA without
the additional normalization of (3.35) (Case La). As expected, (L{).yor /V® ~ O(ey),
indicating that the small growth in cVOF volume error is due to (2.43). Therefore, if €
is changed we expect (L;).yor and (Change) yop to change proportionally. As s remains
consistent with f through (3.36), € does not affect the ELA metrics in table 3-2. The growth
of the ELA volume conservation error per step, (L)g 4 /V?, is approximately machine
precision, validating that the ELA method is volume conservative to machine precision.

Case La validates that, as expected, ELA is volume conservative to machine precision.
To reduce the accumulation of error related to machine precision, we can use the additional
normalization step of (3.35). Case Lb in table 3-2 shows that this achieves a 1/40 reduction
in the (already near machine precision) error. All further use of the ELA method includes
(3.35) unless stated otherwise.
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—>—— Early interval (0 < t/t, < 1) —>—— Early interval (0 < t/t, < 1)
—6— Late interval (1 < t/t, < 2) —6— Late interval (1 < t/t, < 2)

(a) (b)

Figure 3-9: The average proportion of the volume of resolved bubbles involved in cycles C" (a), and
the average rate of change C" /7 (b), for HIT simulations with different snapshot intervals 7 = Az /¢,
(see table 3-1), compared to a linear relationship.

3.5.3 Relationship between cycle generation and snapshot interval

For the HIT simulations, we now evaluate cycle production using the same analysis method
described in §3.3.3. To evaluate the effect of the number of bubbles and events, two different
time periods are considered: an early period 0 < 7/, < 1 covering 15 snapshot intervals
with fewer bubbles and events, and a late period 1 < 7/, < 2 covering 15 snapshot intervals
with more bubbles and events. Noting that we track all bubbles, not just those that are
resolved (v > vys), the largest value of M" is 9 X 10* for the early and 2 x 10° for the late
period. To avoid inflating the count of cycles by including under-resolved events, we first
remove columns of A=+ relating to under-resolved parent bubbles, v < vy, and rows
relating to under-resolved child bubbles, v*! < v.. By repeating the simulations with
different At (see table 3-1), we obtain a range of T = At,/t;. The results are shown in figure
3-9.

Previous work on numerical tracking (Chan et al., 2021a; Gao et al., 2021; Rubel &
Owkes, 2019) has identified that over small time intervals, CCL causes chains of spurious
fragmentation and coalescence, as CCL methods struggle to consistently identify distinct
regions of dark fluid separated by lengths on the order of the grid. Generally, interfaces
can be arbitrarily close, making this a fundamental limitation of CCL (Herrmann, 2010).
When tracking bubbles identified by CCL, imposing a minimum At¢, typically mitigates
the inclusion of spurious events (Chan et al., 2021a; Gao et al., 2021). As this strategy
is adopted to improve the CCL information provided to tracking, it applies to all tracking
methods, including ELA. Note that the characteristic time period of spurious events, and thus
appropriate minimum Atg, is likely sensitive to both the fluid solver and the CCL method.

Cycle production depends on the number of events and number of bubbles, as illustrated
by the difference between the early and late time periods; however, over both time periods
an approximately linear scaling C" « 7 is observed. Considering the magnitude of C", we
observe that, for 7 = O(0.1) proposed by Chan et al. (2021a), 5% of the resolved volume is
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involved in cycles for the early period and 20% of the resolved volume is involved in cycles
for the late period. This means previous tracking methods would be unable to provide unique
solutions to the tracking matrix, and the differences between solutions could be significant.

Given its Eulerian nature, ELA itself will not introduce cycles, however it is not
necessarily clear which cycles are the result of either physical exchanges of volume (as
illustrated in figure 3-4 and figure 3-5) or spurious events caused by CCL. Because tracking
considers CCL given, ELA cannot directly quantify what portion of these cycles fall into
each category; however, the results in figure 3-9 do suggest that physical cycles are abundant
in this simulation. As C" provides a measure of the total cycle production over an interval
7, C"/7 provides a measure of the rate of cycle production. For small 7 < 1072, C"/7
decreases with increasing 7, consistent with the decreasing probability of spurious events.
For the late interval and T > 1072, C" /T increases with increasing 7, consistent with the
increasing probability of physical cycles (illustrated in §3.3.3). This suggests that physical
cycles dominate at large 7 in the late interval of this simulation.

Previous Lagrangian tracking methods were often limited to small Az, because their
binary assumption precludes identifying events over long time periods (Chan et al., 2021a)
and their identification of advection is inaccurate over large displacements (Gao et al., 2021).
Due to its Eulerian volume-tracking nature, ELA does not suffer these limitations and is
accurate for large At;. With ELA making large At possible, it is now easier to select a
At sufficiently large to negate the effect of spurious events caused by CCL. On selecting
Aty in practice, there is also physical motivation, as Az, defines the distinction between a
single event and multiple events, and thus directly affects measured event statistics (Vejrazka
et al., 2018; Solsvik et al., 2016). The effect of Az, on the physical meaning of measured
fragmentation statistics will be addressed in Chapter 5.
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Chapter 4

Characterizing the Surface Layer of
Strong Free-Surface Turbulence

In subsequent chapters we will show how each of the bubble evolution mechanisms
(fragmentation in Chapter 5, entrainment in Chapter 6, and degassing in Chapter 7)
depends on the near-surface turbulence, in particular the turbulent dissipation rate £ and
the characteristic turbulent velocity ums. To apply any of the subsequent models we
develop for these evolution mechanisms, one needs an accurate method to predict the
near-surface turbulence. Therefore, before we address bubble evolution, this chapter focuses
on characterizing air entraining free-surface turbulence, particularly the surface layer where
air and water are highly mixed and turbulence modeling is the most challenging.

4.1 Introduction

For free-surface turbulence, the characteristic velocity is the turbulence fluctuations ;g
and the characteristic length scale is Ly = u> /&, where & and u,ns are measured near the
surface. As discussed in §1.1 the primary quantity for characterizing FST is the turbulent
Froude number (squared),

u2

2 rms

Fry = Lre’ (1.1)
or equivalently Fr% = &/umsg. For Fr% < 1 the free surface is only slightly deformed and
vertical turbulent fluctuations near the surface are suppressed, referred to as the blockage
effect. The blockage effect’s suppression of vertical fluctuations and corresponding transfer
of energy to horizontal fluctuations leads to highly anisotropic, quasi-two-dimensional
turbulence (Shen et al., 1999; Guo & Shen, 2010; Ruth & Coletti, 2024). The strength of
the blockage effect decreases with increasing Fr%. Recently, Yu ez al. (2019) observed that
for very large Fr% the near-surface turbulence is nearly isotropic. They named this regime
strong FST and theorized it may correspond to the onset of entrainment; however, the critical

Fr% above which the strong FST regime is obtained was not determined.
The most observable effect of large Fr% FST (isotropic or not) is that the free surface
becomes highly distorted, to the point where it breaks apart forming bubbles (and droplets)
(Brocchini & Peregrine, 2001a). Brocchini & Peregrine (20015) provide a notational sketch
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Figure 4-1: Notational sketch of the surface layer from “The dynamics of strong turbulence at free
surfaces. Part 2. Free-surface boundary conditions’ by Brocchini & Peregrine (20015). © 2001
Cambridge University Press.

of the surface layer (reprinted in figure 4-1), where the mixing of the air and water means
there is no clearly distinguishable free surface. In place of the free surface is a region where
water and air are highly mixed, called the surface layer. While the creation of bubbles and
subsequent evolution is our ultimate interest, these processes are driven by the near-surface
turbulence, especially the turbulence within the surface layer. Due to the highly variable
density in this surface layer, turbulence modeling is a particular challenge (Brocchini &
Peregrine, 2001a; Hendrickson & Yue, 2019).

One air entraining turbulent flow which is often studied is supercritical open-channel
flow (Chanson, 1996). One approach to modeling the boundary layer turbulence in this flow
is to separately model the surface layer (referred to as turbulent wavy layer) and the turbulent
boundary layer beneath (Killen, 1968; Kramer & Valero, 2023). We note that in these flows
there is typically not a large separation of scales: the height of the surface layer is similar to
the total depth of the flow. This implies a close relationship between the dynamics in the
surface layer and the turbulent boundary layer beneath, making it a challenge to generalize
models for open-channel flow to general free-surface flow. Looking at free-surface wakes,
Hendrickson et al. (2019) noted that the resulting air entraining FST bears little similarity
to open-channel flow. For describing surface layers in general free-surface flow, Brocchini
& Peregrine (20015) provide a theoretical framework based on phase-weighted averaging.
For the case where the surface layer is thin relative to the large-scale features of the flow,
Brocchini (2002) shows theoretically how the surface layer could be treated as a modified
boundary condition in k-& type Reynolds-averaged Navier Stokes (RANS) simulations.

We consider air entraining FST where the mechanisms that generate turbulence in the
water are sufficiently separate (in either distance or scale) from the surface layer. We study
this using direct numerical simulation (DNS) of a canonical example of such a flow, where
homogeneous, statistically steady turbulence is generated in a region deep beneath the free
surface (Guo & Shen, 2009). In §4.2 we develop a quantitative definition of the surface
layer thickness ¢, which unlike previous definitions (Brocchini & Peregrine, 20015) is
independent of the (Fr%—dependent) quantity of bubbles deep beneath the surface and makes
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no assumptions about the distribution of intermittency. Using measurements from DNS
across a wide range of Fr% (described in §4.3), in §4.4 we quantify the distribution of
intermittency, confirming that it collapses after scaling by ¢, and showing that it is well
described by a logistic distribution. In §4.5 we study the turbulence in the surface layer.
We show that Fr% > 0.1 is the criteria for strong FST, when blockage effects are small and
the turbulence in the surface layer is isotropic. For strong FST, we find that the turbulence
within the surface layer only depends on ¢ and the turbulence quantities at the bottom of
the surface layer. These results confirm the possibility of modeling the surface layer as a
modified boundary condition in RANS, especially for Fr% > (.1. In §4.6 we show how the
two necessary quantities for such a boundary condition, the surface layer thickness d; and
the work done on the surface layer W, scale with Fi r%.

4.2 Defining the surface layer in free-surface turbulence

The defining property of the surface layer is the heterogeneous mixture of air and water. As
introduced in Chapter 2, the mixture of any two immiscible phases can be described by a
binary color function (2.2). For air and water,

(x.1) 0 if xeair @.1)
c(x, 1) = . .
1 if x e water

Our interest is the average behavior of the surface layer, and we consider the simplest case
where FST is horizontally and temporally homogeneous. Averaging along the homogeneous

dimensions,
I - dx dy dr
TE (4.2)
[JJ dx dy dr
we define the intermittency factor (Brocchini & Peregrine, 20015)
v(z) = c(x,1), 4.3)

which here is only a function of depth z. This intermittency factor gives the average portion
of volume occupied by water, with v = 1 corresponding to all water and y = 0 all air. The
opposite, 1 — v, is often referred to as the void fraction.

Because the free surface is highly distorted, we first need a definition of the mean
free surface. While alternative definitions may be more appropriate for wave-driven flows
(Brocchini & Peregrine, 1996, 20015), for FST we find a simple definition is sufficient. We
define the mean free-surface height 77 as the height where air and water are evenly mixed:

y(z=1)=0.5. 4.4)

We note that, because FST entrains air bubbles deep beneath the free surface,  will be
higher than the location of the quiescent free surface. In this way, 77 is a measure of the
entire bubble population, which is the focus of subsequent chapters. In this chapter, our
interest is the turbulence near the free surface rather than bubbles deep beneath, so we will
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focus on depths relative to the mean free surface, z — 7.

Recalling that the defining property of the surface layer is the mixture of air and water, a
common way to define the surface layer is to choose a ymax and ymin, and define the surface
layer as the depths z where ymax > ¥(2) > ¥min (Brocchini & Peregrine, 20015). Others
express this in terms of density pmax > p(2) > Pmin (Hendrickson & Yue, 2019), which is
equivalent. The first challenge is that the choice of these limits is somewhat arbitrary. To
justify a choice, Brocchini & Peregrine (20015) start by considering a single-valued free
surface where the instantaneous free-surface height r7(x, y, t) follows a Gaussian distribution
with mean 7 and variance o->. It can be shown that this gives an intermittency factor

YGaussian (2) = 1 [1 —erf (ﬂ)] . 4.5)
2 V20

Using z — 77 € [-30, 30°] to define the surface layer gives ymin ~ 0.001 and ypax = 0.999.
In §4.4 we will show that FST produces a non-negligible volume of bubbles deep beneath the
free surface, causing y to approach 1 very slowly. Due to these bubbles, we find yax = 0.999
overestimates the depth of the surface layer. More generally, the challenge here is that the
definition of the surface layer depends on the tail behavior of y, which may be only indirectly
linked to the behavior closest to the mean free surface.

As a more robust definition of the surface layer, we use the behavior of y at the mean free
surface rather than the tail behavior far from the mean free surface. To do this, we define a

free surface thickness .

6 (dy

0= — | — ) (4.6)
V2 ( dz z=ﬁ)

and define the surface layer as z — 7j € [—6,/2, 65/2]. We choose the constant 6/ V27 so that

in the case where y = yGaussian, 05 = 60~ and our definition of the surface layer is equivalent
toz—1n € [-30,30].

Asserting that ¢ characterizes the surface layer, it is useful to define an aptly nondimen-
sionalized depth,

, “.7)

and the surface layer is z* € [-0.5,0.5]. Using DNS of FST at a wide range of Fr%, we
will show in section 4.4 and section 4.5 that this scaling indeed characterizes the surface
layer. Specifically, scaling by z* and turbulence properties measured at z* = —0.5 collapses
measurements in the surface layer across Fr%; and z* = —0.5 separates the surface layer
where turbulence is directly affected by the free surface from the region beneath only
indirectly affected by the free surface. These two insights suggest the possibility of distinct
turbulence closure modeling within the surface layer, and in section 4.6 we explore this and
show how &, can be predicted a priori.



4.3 Direct numerical simulation of statistically steady
forced free-surface turbulence

To study FST, we pick a flow which isolates FST from other free surface mechanisms (e.g.,
waves) and is homogeneous in the horizontal and temporal dimensions. This is obtained
with forced free-surface turbulence (forced FST), where isotropic turbulence is continuously
forced deep beneath the surface to obtain statistically steady turbulence at the surface. This
simulation setup was first described by Guo & Shen (2009) for small Fr% and has recently
been extended to moderate and large Fr% (Calado & Balaras, 2025; Gaylo & Yue, 2025).

We use the forcing method described in section 2.1.5 to maintain isotropic turbulence in
a bulk region deep beneath the free surface. Recall, this adds a linear forcing term

f=Au'F(2). (2.32)

to the Navier-Stokes equation, (2.5). We choose A dynamically using (2.30), where we set
the target dissipation rate &gpget = 1. The horizontal domain length is 27 in both x and y,
which gives u;ns = 1 in the forcing region (Rosales & Meneveau, 2005). In this way, we
choose the simulation setup to give characteristic turbulent scales of unity within the forcing
region. An equivalent interpretation is that we use the characteristic turbulent scales within
the forcing region to nondimensionalize all values in the simulation, i.e., to go from (2.1b)
to (2.5).
Following Guo & Shen (2009), we use

0 Ze > Ip+ 1y
F() =44 (1=cos|Eze =ty -10)]) zesbitlas ze=letly+lath]  @8)
1 ZcSlb

to define the region deep beneath the free surface where forcing is applied. The forcing is
primarily contained to a forcing region of height 2/, = 3r centered around z, = 0. There is
damping region [; = /2 on either side of the forcing region, then a free length [, = /2
before the bottom of the domain or the quiescent free surface at z = 0. For the majority
of the simulations there is an air gap of m above the quiescent free surface, to give a total
domain height 677. For Fr? > 2, the air gap is increased to 1.757 to avoid the top boundary
affecting the turbulence.

For all simulations, we set Re = 200 and use a constant grid 2562 X 768 or 256> x 864
depending on the air gap. This gives a grid spacing A ~ 0.025. Comparing the grid
spacing to the Kolmogorov microscale n7, in the bulk region where turbulence is strongest
nr/A = 0.78, and near the free surface where we are interested 7/A ~ 1.8. As discussed in
section 2.1.1, this is sufficient resolution for DNS of air entraining FST. To obtain different
conditions, we change Fr? and We in (2.5), with We = oo corresponding to cases where
surface tension is not modeled. Table 4-1 shows forced FST simulations performed for the
analysis of turbulence here. In this chapter our focus is the scaling of turbulence with Fr%
so all simulations use We = co. In Chapter 6 we will address the effects of (weak) surface
tension.
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Frr We 7i O Urms £ Ly Fr% Rep
03 o 0.010 0.41 0.27 0.025 0.81 0.03 44
0.6 o 0.030 0.77 0.30 0.030 0.89 0.06 53
09 o 0.080 1.08 0.34 0.030 1.32 0.08 90
1.2 o 0.124 1.29 0.27 0.030 0.69 0.13 38
1.5 o 0.180 1.40 0.27 0.028 0.73 0.15 40
1.8 o 0.268 1.60 0.30 0.030 0.85 0.18 50
2.1 o 0.345 1.73 0.27 0.027 0.70 0.21 37
24 o 0.363 1.78 0.26 0.024 0.74 0.22 39
27 o 0.543 1.76 0.26 0.024 0.69 0.26 35

Table 4-1: List of forced FST simulations used for turbulence analysis. Turbulence properties
urms and & are measured at the bottom of the surface layer (z* = —0.5). The characteristic
length scale Ly = u3,,,/€ is used to calculate the near-surface turbulent Froude number (squared)
Fr:‘} = (u2../L7)Fr? and the turbulent Reynolds number Rer = (u4;msL7)Re.

rms

Simulations are initialized at = 0 from a random velocity in the bulk and a quiescent
free surface at z = 0 and then run for at least 400 bulk eddy turnover times. We consider total
gravitational potential energy, turbulence statistics, the bubble population, and entrainment
statistics to assess convergence to a steady state. We find that total gravitational potential

energy, 1
PEg:ﬁﬂpZdV_C (49)
r

where the constant C is chosen such that PE, = 0 at ¢ = 0, is the most useful for assessing
steady state convergence. One concern for these horizontally periodic simulations is that
a standing wave will form. Recalling the horizontal domain length is 2r, the standing
wave would have wave number « = 1 and (by the deep-water dispersion relation) frequency
w = 1/Fr. The characteristic timescale of the turbulence in the bulk 7 = L/U is unity, and
we could expect some coupling if 7'/w is close to an integer multiple. Indeed, we had some
trouble with Fr? = 0.9 (where T/w = 0.95 ~ 1), but were able to results by considering an
earlier time before the standing wave developed. We were unable to obtain a steady state for
Fr? =3.3 (where T/w = 1.82 =~ 2).

Figure 4-2 shows a representative rendering near the free surface of a simulation once
its reached steady state. After a statistically steady state is reached at ¢ = 7, steady-state
statistics are obtained over ¢ € [tg, fo + Tsim]. For the turbulence analysis in this chapter, we
fix Tgim = 128. Over this period, we use 400 evenly spaced samples for temporal averaging
in (4.2).

While the simulation setup allows us to prescribe the turbulence levels in the bulk region,
our interest is the turbulence levels near the surface. Guo & Shen (2009) provide an empirical
fit for Fr?2 < 1; however, the near surface turbulence is not known a priori. Instead, we
measure the near surface turbulence a posteriori and calculate new non-dimensional numbers
to properly characterize the near-surface turbulence. At z* = —0.5, we measure the turbulent
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Figure 4-2: Rendering of a forced FST simulation (Fr* = 1.2 and We = 200) showing the free
surface and bubbly flow beneath. Scaling to match Earth gravity and air-water surface tension and
density, each square on the background grid is 1.09cm across.

kinetic energy

pk

| —

pu-u, (4.10)
which gives a characteristic velocity ;s = v2k/3, and the dissipation rate
ﬁgETl’jaui/an. (411)

Both are shown in table 4-1. These quantities define near-surface nondimensional numbers,
most relevant here is the turbulent Froude number (squared) Fr% = &/urmsg. In §4.5 we
will show that the turbulence levels at z* = —0.5 best characterize the turbulence within the
surface layer.

4.4 Intermittency in the surface layer

From the DNS results, we start by analyzing the intermittency factor y(z). Figure 4-3 shows
v(z) for the range of Fr%, before and after scaling relative depth z — 77 by surface layer
thickness 0. Given d; is defined by the derivative of y at z = 7}, the distributions necessarily
collapse at the mean free surface. However, we see that scaling by d also does a good job
collapsing the distribution of y(z) throughout the surface layer. For z* < —0.5 we do see
some small Fr%-dependent differences, and in section 4.4.1 we will confirm that this is the
result of Fr%—dependent bubble entrainment rates, rather than any difference in the nature of
the surface layer. In section 4.4.2 we will investigate the shape of y(z) and show that it is
closer to a logistic distribution rather than the Gaussian distribution discussed by Brocchini
& Peregrine (2001b).
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Figure 4-3: Intermittency factor y as a function of (a) depth relative to the mean free surface and (b)

depth scaled by surface layer thickness. ( ) indicated the mean free surface 77 and in (b) (- - - -)
shows the extent of the surface layer.

4.4.1 Separating out the effects of bubbles and droplets

The intermittency factor y includes the effects of three different types of features: the free
surface, bubbles, and droplets. To separate these, we start by applying ICL (Hendrickson
et al., 2020, see also §2.3) to identify contiguous regions of air that are disconnected from
the bulk region of air above the free surface (bubbles) and contiguous regions of water that
are disconnected from the bulk region of water below the free surface (droplets). From this
post-processing, we can define two new binary color functions,

1 if x e droplet of wat
cD(x,t)E{ if x ropeowaer, (4.122)

0 otherwise

—1 if x € bubble of air
cp(x,t) = . (4.12b)

0 otherwise

Subtracting these from the original color function, we obtain a third binary color function
C()EC—(CD+CB), (4.12¢)

which describes the mixture of air and water if all bubbles were filled with water and
all droplets replaced by air. This cq isolates free-surface effects. Figure 4-4 shows a
representative example of splinting the original color function ¢ into these three color
functions.

Qualitatively, we note some key differences between figure 4-4 from DNS and figure 4-1,
the sketch by Brocchini & Peregrine (20015). Despite the high Fr%, DNS shows an intact free
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Figure 4-4: Two-dimensional slice over z* € [—1,+1] from the Fr% = 0.13 simulation showing:
(a) the original color function c; (b) the free-surface color function cg; (c) the droplet color function
¢p; and (d) the bubble color function 1 + cg. Color scale from 0 (white) to 1 (blue).

surface is still easily identifiable. The easily identifiable free surface is also apparent in the
three-dimensional rendering in figure 4-2. This observation is consistent with experimental
work on open-channel flow. While the surface layer appears to the human eye like a uniform
mixture of air and water, high-speed photography shows the free surface, while highly
distorted, is still mostly intact (Killen, 1968; Wilhelms & Gulliver, 2005).

To quantify the air-water mixture in the surface layer, we apply averaging like in (4.3) to
each of the three new color functions to obtain 7y, yg, and yp, shown in in figure 4-5. These
split the intermittency factor into the contributions from each of the three phenomenon,

Y=Y0+VYB+7YD. (4.13)

By rough order-of-magnitude, we see yg is 100 times larger than yp, which is 100 times
larger than yp. For droplets, we see a peak in yp within the upper surface layer (z* ~ 0.2)
and then a rapid decay with increasing height. The behavior for bubbles is very different:
—7vp increases with increasing depth throughout the surface layer, and then only very slowly
decays with further increasing depth. Because p,/p,, < 1, the mass of a bubble is negligible
compared to the water surrounding it, allowing the turbulence in the water to advect the
bubble deep beneath the surface. As expected, —yp increases with Fj r%, as bubble entrainment
increases as Fr% increases (see Chapter 6).

Focusing on the free surface effects, we see in figure 4-5 that the distribution of vy
collapses very well when scaling by z*. Because yp is so small, droplet effects are negligible.
The small Fr%-dependence of v for z* < 0 in figure 4-3b is confirmed to be because of
bubbles. For significantly larger bubble void fractions (i.e., larger Fr%) one may need
to calculate 65 using y( rather than y in using (4.6); however, for these simulations the
difference is negligible.
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Figure 4-5: The three sub-components of intermittency factor y across a range of Fi r% (see figure 4-3a
for color legend). yq describes the free surface, yp bubbles, and yp droplets. Note the difference in
magnitude of the horizontal axes.

4.4.2 Describing the distribution of intermittency

We now consider the distribution of the intermittency factor. To highlight the tail-behavior
of the distribution, figure 4-6 shows the derivative of intermittency with z*. In general, we
see tail behavior like

—dy/dz < exp[|z]] , (4.14)

especially for the upper tail (z* > 0). This is opposed to —dy/dz « exp[z?] predicted by
(4.5). Instead of Gaussian, this tail behavior is characteristic of a logistic distribution,

YLogistic (2) = % [1 — tanh (Z ; ﬁ)] . (4.15)

The behavior of yg (figure 4-6b) is generally the same as y (figure 4-6a), demonstrating
that this is logistic behavior is the result of free-surface phenomenon rather than droplets.
We can compare this result to experiments by Ruth & Coletti (2024), who studied a similar
horizontally and temporally steady FST forced from below, but at Fr% < 1 where the
free surface is not broken. For such a single-valued surface, — dy/dz is equivalent to the
probability distribution function of free surface deformations. Their results also appear
to follow o exp[|z|] (Ruth & Coletti, 2024, Figure. 5a). An interpretation of the logistic
distribution of y comes from Wactawczyk (2021), who noted analogies between the effects
of macroscopic turbulence and mesoscopic thermal fluctuations on intermittency at the
respective scales.

While the logistic distribution does a much better job than the Gaussian distribution
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Figure 4-6: Distribution of (a) total intermittency and (b) intermittency excluding droplets and
bubbles across a range of Fr% (see figure 4-3a for color legend). Distributions are compared to (— ——)
YGaussian from (4.5) and (——) YLogistic from (4.15). Vertical (- - - -) show the extent of the surface
layer.

at describing intermittency y, we do note that for the lower tail (z* < 0) the distribution
of v is more complicated. Beneath the surface layer (z* < —0.5) there is a larger tail than
even predicted by the logistic distribution (4.15). While removing the effect of bubbles
with yg reduces the tail, there is still a larger tail. This can be understood by examining
co in figure 4-4b. Even after removing bubbles, there are still pockets of air which, in
the two-dimensional slice of the domain, appear separate from the bulk air above the free
surface. In three dimensions it is clear that these are long filaments of air that can reach deep
beneath the free surface while still being connected to the bulk air above. These filaments
are presumably the result of bubbles that recently reconnected to the surface (degassing)
or are soon to disconnect from the surface to form a bubble (entrainment), making it a bit
unclear if filaments should be treated like free-surface phenomenon (as done here) or bubble
phenomenon.

4.5 Turbulence in the surface layer

We now examine the turbulence in and around the surface layer. First, section 4.5.1 examines
the isotropy, showing that the transition to strong FST, where near-surface turbulence is
nearly isotropic (Yu et al., 2019), happens at the critical turbulent Froude number Fr% =0.1.
In section 4.5.2 we examine the terms in the averaged vertical momentum (pw) conservation
equation, and in section 4.5.3 we examine the terms in the averaged kinetic energy (pk)
conservation equation. Throughout this analysis we will show that relevant properties
collapse across a wide range of Fr% when properly scaled by z*, and that, partially for strong
FST (Fr% > 0.1), the free surface is not felt by the turbulence outside of the surface layer,
with z* = —0.5 being the transition point. In section 4.6 we discuss how these insights can
be applied to RANS turbulence modeling.
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Figure 4-7: (a, b) Isotropy metric J and (c) relative contributions of vertical fluctuations ¢ across a
range of Fr:‘} (see figure 4-3a for color legend).

4.5.1 Isotropy

For weak FST (Fr% < 1), the restoring force of gravity prevents large deformations of the
free surface, suppressing vertical fluctuations. This blockage effect creates highly anisotropic
turbulence (Shen et al., 1999; Guo & Shen, 2010; Ruth & Coletti, 2024). However, as
Fr% increases the strength of the turbulence increases relative to gravity. Yu et al. (2019)
show that for sufficiently large Fi r% the blockage effectively disappears and the near-surface
turbulence is nearly isotropic. Calado & Balaras (2025) show that for more moderate Fr%
vertical fluctuations are partially suppressed. It is now known what Fr% is the transition
between moderate FST where vertical fluctuations are partially suppressed and strong FST
where the turbulence is nearly isotropic.
A formal way to quantify isotropy is the isotropy metric

J=1-9 (%bijbij - bijbjkbki) 5 (416)

where b;; = w;u;/uxui — 6;;/3 is the anisotropy tensor. J = 1 corresponds to perfectly
isotropic turbulence, and J = 0 corresponds to either one- or two-component turbulence
(Pope, 2000). Figure 4-7a and 4-7b show J as a function of depth, unscaled and scaled by
0, respectively. First, we observe that scaling by ¢, does a very good job collapsing the
behavior of J with depth. Across all Fr%, there is a local minimum in the isotropy metric at
7" =~ —0.25 suggesting this is where the blockage effect is strongest.

Transition from moderate to strong FST

Figure 4-8 shows the values of J at the local minimum. This result shows a clear transition
from moderate FST to strong FST at Fr% ~ 0.1. For Fr% > (.1 we observe nearly isotropic
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Figure 4-8: Minimum value of the isotropy metric J in the lower surface layer (z* € [-0.5,0]) as
a function of F rzT, with the approximate transition from moderate to strong FST indicated by the
vertical dashed line at FrZT =0.1.
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Figure 4-9: Comparison of one-dimensional turbulent energy spectra at z = 0 between moderate and
strong FST. E || = Ey;, so for clarity the horizontal components are averaged.

turbulence (J = 0.95), as expected for strong FST. For Fr% < 0.1 we see a moderate FST
regime where turbulence becomes more anisotropic as Fr% decreases, although J is still far
from J ~ O characteristic of weak FST.

In addition to measuring isotropy, we examine the turbulence energy spectrum at z = 0.
From the momentum p = pu measured at z = 0, we apply Fourier analysis and average
over t € [tg,to + Tyim| to obtain the one-dimensional (in the x-direction) energy spectrum
E;;, normalized such that f (Ey1 + Ex + E33) de = 1. Figure 4-9 compares the spectra
of moderate and strong FST. For moderate FST, we see that the horizontal fluctuations
are stronger than the vertical fluctuations at all scales and that E o« k=3, characteristic of
two-dimensional turbulence (Kraichnan, 1967). For strong FST, we see that the turbulence
is isotropic at all scales (E|; = Eyy = E33 for all «) and that there is a range of x where
E o k73, consistent with the Kolmogorov inertial sub range of isotropic turbulence.
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Behavior of isotropy in and around the surface layer

Having established that Fr% = 0.1 separates moderate from strong FST, for each we now
examine the behavior of isotropy in and around the surface layer. Returning to figure 4-7b,
the first and most important observation is that for strong FST there is no effect of the free
surface on isotropy beneath the surface layer (i.e., J = 1 for z* < —0.5). This is the first
indication that, for strong FST, turbulence beneath the surface layer does not directly feel the
presence of the free surface. This observation will form the basis of the surface layer model
we develop in section 4.6.

We now investigate isotropy in the surface layer. The cause of anisotropy in FST is the
effect of gravity on vertical fluctuations, so it is also useful to consider the relative magnitude
of vertical fluctuations,

¢ = 3ww/uuy, 4.17)

shown in figure 4-7c. For moderate FST, we see ¢ < 1 below and throughout the surface
layer, indicating that vertical fluctuations are suppressed. Focusing on strong FST, we see
that in the lower surface layer (z* € [-0.5,0]) vertical fluctuations are suppressed, but in
the upper surface layer (z* € [0,0.5]) ¢ > 1, indicating that vertical fluctuations are in fact
amplified. This helps explain the shape of J in strong FST. By symmetry, our FST flow will
satisfy uu ~ vv and uv = 0, from which one can show

Jx~1¢(3-¢) (4.18)

For ¢ to go from < 1 in the lower surface layer to > 1 in the upper surface layer, it must pass
through ¢ = 1 around the mean free surface. This explains why near perfect isotropy (J = 1)
is observed at the mean free surface (z* = 0) for strong FST (see figure 4-7b).

4.5.2 Momentum

We now examine the vertical momentum equation. We define density fluctuations p” = p —p,
in which case the vertical component of (2.1), neglecting surface tension, can be written in
conservative form as

opw

W =-V.(upw) —dpy/0z+071i3/0x; + p'g. (4.19)

For pressure we consider dynamic pressure py = p — pj,, where the true hydrostatic pressure!

is defined ,
pn(z) = po+ g/ o(z)d7, (4.20)
Z

with pg as some reference pressure. Averaging (4.19) using (4.2) and splitting the Reynolds
stress into two terms, pww = p ww + p’ww, we are left with four momentum flux terms,

0 -
0:——(5W+p/ww+p—d—@). 4.21)
0z

IThis true hydrostatic pressure is time-independent, unlike the pseudo hydrostatic pressure (2.7) used
internally by the DNS solver.
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Figure 4-10: Momentum flux normalized by mean density p measured for each z* and characteristic
velocity u;ms measured at z* = —0.5 (see Table 4-1) across a range of Fr% (see figure 4-3a for color
legend). For the viscous term, we further multiply by Rer to bring it to a similar scale.

The appropriate choice for py makes the sum of momentum flux terms (i.e., stresses) zero:
PwWw+p'ww+ps—133=0 4.22)

In figure 4-10 we plot (per unit mass) the mean-density component of Reynolds stress ww,
the fluctuating-density component of Reynolds stress p’ww/p, and the viscous stress —733/p.
As shown in (4.22), pressure stress py/p cancels the sum of these other three stresses. We
see that plotting against z* and normalizing the stresses by u2, . measured at the bottom of
the surface layer (z* = —0.5) does a good job collapsing the results, especially for strong
FST. Beneath the surface layer (z* < —0.5), there is no contribution of fluctuating-density
Reynolds stress or viscous stress. Within the surface layer (z* € [—0.5,0.5]), viscous stress
is of order Re;l, meaning it is negligible in this DNS and certainty negligible at the larger
Rer typical of real-world FST. For strong FST, we see that ww slightly decreases in the lower
surface layer as vertical fluctuations are suppressed, then slightly increases in the upper
surface layer as vertical fluctuations are amplified, consistent with ¢ in figure 4-7c.

We now focus on the fluctuating-density component of Reynolds stress, p’ww. Within
the lower surface layer this term becomes slightly negative, then increases through the upper
surface layer. As with intermittency in section 4.4.1, we can split this term into separate
contributions from bubbles, droplets, and the free surface. Recalling (2.4), we can write
density fluctuations as

p =A4p(c-7y), (4.23)

where Ap = p,, — p, 1s the difference in density between water and air. As in section 4.4.1,
we can split the color function into the contributions from each of the three phenomenon
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Figure 4-11: Components of p’ww from (4.25), normalized by mean density p(z*) and characteristic
velocity u;ms measured at z* = —0.5 (see Table 4-1) across a range of FrzT (see figure 4-3a for color
legend). Note the difference in magnitude of the horizontal axes.

(¢ = co + cp + cp) and the same for the intermittency factor (y = yo + yp + vp). Through
(4.23), this allows us to split the density fluctuations (p” = p;, + p}, + pj). The density
fluctuations caused by the free surface are

Po = Ap(co—v0), (4.24)

and similar equations for p7, and pJ describing fluctuations caused by droplets and bubbles
respectively. This allows us to decompose p’ww into three terms,

P'WW = piww + pEww + ppww, (4.25)

each shown in figure 4-11. We see that, by at least two orders of magnitude, free-surface
effects (pjww) dominate bubble or droplet effects. As expected, droplets only have a (very
small) effect above the mean free surface (z* > 0). Bubbles on the other hand never have a
significant effect through p,ww, even for large F r% where the volume fraction of bubbles is

non-negligible. To explain this result, we note that pjww can be interpreted as the correlation
between the presence of a bubble and large vertical velocities. Appendix D contains an
analysis of all the p’ww terms interpreted as correlation coefficients. In summary, zero
correlation is what one would obtain if bubbles were treated as passive particles, showing
that bubbles in FST are primarily advected by the turbulence, with buoyancy having a smaller
contribution.
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4.5.3 Turbulent kinetic energy

We now examine the turbulent kinetic energy (TKE) equation. Taking the inner product of u
and (2.1) written in conservative form (again, neglecting surface tension),

%(%pu-u) =_V. [u(%pu-u)+up—u-’r] —1:Vu-gow. (4.26)

It is also useful to consider the mass conservation equation,

dap

ot V. (pu)=0. (4.27)

Averaging (4.27) and noting that there is no flux at the bottom or top boundaries of the
domain, we obtain pw = 0. With this the gravity term cancels out when we average (4.26),
and we obtain

0:—(% (%W+W_p—m)—58- (4.28)
In this section, we will: compare the evolution of k and & between the simulations with the
free surface and single phase simulation to show, especially for strong FST, that free-surface
effects are restricted to within the surface layer; examine k and & within the surface layer;
and evaluate the three energy flux terms in (4.28). Predicting the flux of energy into the
surface layer (or equivalently, the energy dissipation within the surface layer) will form an
important part of the turbulence model discussed in section 4.6.

Extent of the free surface’s effect on turbulence

Recall our simulation setup generates turbulence (i.e., injects turbulent kinetic energy k) in a
region deep beneath the free surface, which then diffuses toward the surface while some is
dissipated by . Because of this setup, turbulence levels vary with depth, even in the absence
of free-surface effects (Guo & Shen, 2009). To elucidate the effect of the free surface on k
and &, we first perform a new DNS without any free surface. This no free surface simulation
has the same setup as those described in §2.1, except the entire domain is filled with water.
We find the air gap of r is sufficient such that the upper boundary has negligible effect on the
turbulence around z = 0 (the location of the quiescent free surface in the other simulations).

Figure 4-12 compares k and & from the simulations with and this new the simulation
without a free surface. Turbulence values are normalized by their value at z = —/2, the
point above which there is no forcing and the flow evolves naturally (see (4.8)). Focusing first
on figure 4-12a and 4-12c, in the absence of the free surface we see the expected exponential
decay with depth for both k and & (Guo & Shen, 2009). This is also true for simulations
with the free surface below a certain depth; however, at shallower depths both k and & depart
and are much larger than in the simulation without a free surface.

To quantify the amplification of k and & due to free-surface effects, in figure 4-12b and
4-12d we divide the value of k and & in the simulations with a free surface to the value at
the same z in the simulation without a free surface. We then normalize depth by ¢, to plot
in terms of z*. We see that, especially for strong FST, the amplification of k and & only
happens above the lower limit of the surface layer (z* > —0.5). These results demonstrate
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Figure 4-12: (a & b) Turbulent kinetic energy k and (c & d) dissipation rate £ across a range of Fr%
(see figure 4-3a for color legend), compared to a simulation without a free surface (——).
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Figure 4-13: Turbulent kinetic energy k and dissipation rate &, per unit volume and per unit mass
across a range of FrZT (see figure 4-3a for color legend).

that the free surface does not directly affect the turbulence beneath the surface layer, and that
7" = —0.5 is an appropriate definition of the lower limit of the surface layer. Notably, this
suggests that beneath the surface layer standard turbulence closure models are applicable.

Turbulence within the surface layer

Unlike beneath the surface layer, the turbulence within the surface layer is directly affected
by free surface effects. Figure 4-12b and 4-12d show that k and ¢ are significantly increased
relative to flow without a free surface. Figure 4-13 shows k and & normalized by the value
measured at the bottom of the surface layer (z* = —0.5). For the turbulent kinetic energy per
unit mass k, we see that there is relatively little variation within the surface layer, especially
for the lower surface layer (z* € [-0.5, 0]). In other words, throughout the surface layer, &
does not depart significantly from the value at the bottom of the surface layer (z* = —0.5).
Furthermore, because p, < p,,, the small variation in the upper surface layer (z* € [0, 0.5])
is negligible when one considers the turbulent kinetic energy per unit volume, pk.

For the turbulent dissipation rate per unit mass &, the variations in the surface layer are
slightly larger than for &, but still £ measured at the bottom of the surface layer does a good
job characterizing dissipation rates within the surface layer, especially the lower surface
layer (z* € [-0.5,0]). Because p, < p,,, the majority of the absolute dissipation of energy
happens in the lower surface layer, and we see a reasonably strong collapse of pe.

As a first approximation, one could model the dissipation rate per unit mass in the surface
layer as a constant equal to £ measured at z* = —0.5, in which case the rate at which energy
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Figure 4-14: Turbulent kinetic energy flux terms across a range of Fr% (see figure 4-3a for color
legend), normalized by water density p,, and characteristic velocity uy,s measured at z* = —0.5 (see
Table 4-1). For the viscous term, we further multiply by Rer to bring it to a similar scale.

is dissipated within the surface layer (per unit mean free-surface area) could be approximated

0.5
W~ eds |pw— (Pw — Pa) / )/dz*] . (4.29)
-0.5

Using a distribution of y that is symmetric about 7 (this includes both (4.5) and (4.15)) and
noting p, < p,,, one obtains
W/pw ~ 3 €0,. (4.30)

This first approximation turns out to be very close to the fit we obtain later in section 4.6
based on measuring the flux of energy into the surface layer.

Energy flux into the surface layer

We now investigate the three energy flux terms in (4.28), shown in figure 4-14. As with the
momentum flux terms, we plot against z* and normalize the stresses by u;ns measured at the
bottom of the surface layer (z* = —0.5). First, we note that, as expected, the viscous diffusion
term u;7;3 is of order Re}1 , meaning it is negligible in this DNS and certainty negligible at
the larger Rer typical of real-world FST. For the remaining terms, we see turbulent diffusion
pwu;u; moves energy upward into the surface layer, and pressure diffusion wp partially
counteracts this, moving some energy out of the surface layer. Of note, despite scaling by z*
and umg, we still see Fr% dependence in these energy flux terms.

While we have shown that the turbulence beneath the surface layer does not directly feel
the free surface, the increased energy dissipation with the surface layer is still important to
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Figure 4-15: Work done on the surface layer by turbulence beneath W as a function of Fi r%, including
(——) the linear fit to (4.32) (R = 0.641).

the overall energy budget of the flow. Thus, the energy flux into the surface layer (i.e., the
net work done on the surface layer by the turbulence beneath) is an important quantity to
model. Ignoring the negligible viscous term, this net work is given by the sum of turbulent
and pressure diffusion measured at the bottom of the surface layer,

W = [spwii; +wp| s - (4.31)
In figure 4-15 we show that (nondimensionalized by p,, and u,,s measured at z* = —0.5),

this net work scales like Fr%. Linear regression gives
W/ (puwitim) = Cw Fr ., (4.32)

where the 95% confidence interval is Cy = 4.6 + 0.8. Dimensionalizing (4.32), we see
how the work done on the surface layer depends on gravity and the turbulence (& and ups)
measured at the bottom of the surface layer,

W/py =Cwul gt (4.33)

4.6 A surface layer model for RANS

We have shown that, particularly for strong FST, there is a clear difference between the
turbulence beneath the surface layer and the turbulence within the surface layer, with
7" = —0.5 separating the two. Because the turbulence beneath the surface layer is not
directly affected by the free surface, standard turbulence closure models, such as RANS,
will likely still be appropriate. What is needed then is a model for the surface layer that acts
like a boundary condition for RANS, applied at z = 77 — 0.56, from the mean free surface,
analogous to wall models for boundary layers.

So far, we have obtained the surface layer thickness 65 a posteriori using measurements

of vy, as described by (4.6). For a predictive model appropriate to RANS, we need 6 based on
the turbulence levels € and u; g = 2k /3. Figure 4-16 shows the scaling of ¢, normalized
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Figure 4-16: Surface layer thickness d;, normalized by the characteristic length scale Ly = u /e
measured at z* = —0.5, as a function of Fr%, including (——) the linear fit to (4.34) (R? = 0.909).

by the characteristic turbulence length scale Ly = u’. /e, as a function of Fr%. We see a
strong linear relationship
ds/Lr = Cs Fry, (4.34)

where the 95% confidence interval is Cs = 11.1 + 1.1. Dimensionalizing,
6y =Csu’ g ! (4.35)

This is the scaling one would expect from a simple wave argument: that energy is roughly
evenly distributed between gravitational potential energy (« p,,gd,) and kinetic energy
(oc pwurzms). We note that the depth that u,, is measured at (z* = —0.5) is a function of dj,
so (4.35) is not strictly explicit; however, because u;ys does not change quickly with depth
(see k in figure 4-13), solving (4.35) should not be a challenge.

For a k-¢ RANS model, we need a boundary condition which describes the flux of
turbulent kinetic energy across the surface layer boundary at z* = —0.5. Brocchini (2002)
derive the form of this boundary condition for general FST, and here we study a subset where
there is no turbulent energy production in the surface layer and energy flux is driven by only
dissipation within the surface layer. This flux of k into the surface layer (per unit area) is
given by (4.33). Using (4.35), we can rewrite (4.33) as

W/pw = (Cw/Cs) &5 (4.36)

While Brocchini (2002) consider k = W~ u/2 rather than k = pu - u/2p, beneath the surface
layer v ~ 1 and the difference is negligible. Therefore, this Cy/C; is equivalent to Cgjss in
the model derived by Brocchini (2002). We have that Cy/Cs = 0.41 = % meaning that
(4.36) is consistent with the first approximation (4.30) developed in section 4.5.3 based on
the simplifying assumption of constant & throughout the surface layer.

86



4.7 Conclusion

For sufficiently large Fr%, turbulence is strong enough to overcome the restoring force of
gravity and break apart the free surface, leading to air entrainment. Our interest in this
chapter is characterizing the turbulence in the resulting surface layer, where air and water a
highly mixed. The turbulence in this region drives bubble evolution mechanisms, but it is
hard to predict using turbulence modeling, like RANS.

We develop a definition of the surface layer thickness d; based on the derivative of
intermittency dy/dz at the mean free-surface height z = 7. This removes dependence of d;
on the tail-behavior of y, which can be affected by the (F r%—dependent) bubble void fraction
deep beneath the 77 and makes no assumptions about the distribution of . It turns out that
our more robust definition of the surface layer is appropriate to characterize the relevant
properties of the near-surface turbulence. In particular, scaling depth by z* = (z — 77) /d;
collapses results across broad ranges of Fr%, and there is a clear difference in behavior
between within the surface layer and beneath the surface layer, separated by z* = —0.5.

We show the collapse with z* for intermittency, turbulence isotropy, turbulent momentum
flux, and turbulent energy flux. For intermittency, we show that even at large Fr% the
surface layer intermittency is driven by the movement of a mostly intact free surface (rather
than bubbles or droplets), and that the distribution is logistic rather than Gaussian as often
assumed (Brocchini & Peregrine, 20015). For isotropy, we show a clear transition to nearly
isotropic turbulence in the surface layer around Fr% ~ 0.1. This defines the range (Fr% > 0.1)
of the strong FST regime (Yu et al., 2019). Our measurements of turbulence highlight that,
particularly for strong FST, the direct effects of the free surface are constrained to the surface
layer (z* € [—0.5,0.5]), and that the turbulence within the surface layer follows a universal
behavior characterized by ¢, as well as € and u;ns measured at the bottom of the surface
layer (z* = —0.5).

In section 4.6 we discuss that, because the direct effects of the free surface are constrained
to the surface layer, RANS turbulence modeling could be applied without modification
beneath the surface layer, with a boundary condition at the bottom of the surface layer
capturing the indirect effects though energy flux. This is similar to the thin-layer model
theorized by Brocchini (2002). We determine the scaling of d and the energy flux into the
surface layer, W, with F r%, and linear regression to DNS data provides the scaling coefficients.
These are the two values needed to implement a surface layer boundary condition in k-&
RANS.
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Chapter 5

Bubble Fragmentation in
Homogeneous Isotropic Turbulence

In this chapter we focus on bubble fragmentation, the S¢(a) term in the population balance
equation (1.2). We study fragmentation in homogeneous isotropic turbulence (HIT), which,
as shown in Chapter 4, is a good approximation of the turbulence beneath the free surface. For
strong FST (F r% > (.1), this is true even in close proximity to the free surface. Fragmentation
is important to understanding the bubble population beneath entraining free surfaces because,
as discussed in section 1.3, a fragmentation cascade is the basis for the N(a > ag) o a~'9/3
bubble population predicted by Garrett et al. (2000). By elucidating three fundamental
timescales of fragmentation, we validate some of the modeling assumptions used to obtain
—10/3 and determine how long it takes for a bubble population to reach this equilibrium
solution.

Key results from this chapter are summarized in “Fundamental timescales of bubble
fragmentation in homogeneous isotropic turbulence” by Gaylo, Hendrickson & Yue (2023).

5.1 Introduction

For general turbulent flows, there is the large length scale of the flow driven by the geometry
and the way in which turbulence is generated, and the small Kolmogorov scale n7 where
turbulent kinetic energy is dissipated to heat. As shown in (2.18), the ratio between these
two scales with ~ Re>/*. For many different turbulent flows with Re > 1, the turbulence
between these two scales (the Kolmogorov inertial sub-range) exhibits universal behavior
like that of simple HIT. Hence, fragmentation of bubbles within the Kolmogorov inertial
sub-range of HIT is often studied due to its wide applicability, including to free-surface
turbulence (Yu et al. 2019; Gaylo & Yue 2025; see also Chapter 4).

In HIT, fragmentation is primarily governed by the disturbing effect of turbulent
fluctuations and the restoring effect of surface tension. The ratio between the two is given by
the bubble Weber number introduced in section 1.3,

3 282/3(261)5/3

Wep = , 1.10
= ) (110)
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where ¢ is the turbulent dissipation rate, a is the parent bubble’s effective radius, and o
is the surface-tension coefficient. The Hinze scale is defined as the Weber number Wey
below which surface tension largely prevents fragmentation (Hinze, 1955), corresponding to
a bubble radius

apy =278 We;{/5 (O'/pw)3/5 g2, (5.1

Thus, our focus here is moderate (Wep > Wep) to large (Wep > Wep) Weber numbers
where fragmentation is present. Especially for Wep > Wep, we expect the daughter bubbles
of a fragmentation event to fragment themselves, leading to a fragmentation cascade. An
assumption made by Garrett et al. (2000) to obtain this fragmentation cascade is that
fragmentation is a local process, meaning it is uncommon for fragmentation to form daughter
bubbles much smaller than the parent. Locality in fragmentation cascades is confirmed by
Chan et al. (2021b,¢).

Our interest is the statistical modeling of fragmentation for the population balance
equations (PBE) (1.2). In principle, the necessary statistics can be derived from a (more)
complete mechanistic description of fragmentation, which is a subject of active investigation
(e.g., Liao & Lucas, 2009; Qi et al., 2022; Riviere et al., 2021, 2022). In addition to the
challenge of disparate mechanistic descriptions, another challenge is that these often describe
the behavior of a bubble as dependent on its history (for example, the two-step process
presented by Riviere et al. (2022)). Contrarily, the PBE assumes that the statistical behavior
of a bubble is independent of its history, i.e., no hysteresis. The present work complements
mechanistic studies by focusing on the fundamental statistics of turbulent fragmentation,
quantified through their characteristic timescales. While individual physical mechanisms
can also be characterized by timescales, such as the timescale for a sufficiently strong eddy
to fragment a bubble (Qi et al., 2022) or the timescale for capillary-driven production of
sub-Hinze bubbles (Rivicre et al., 2021, 2022), our focus is on the timescales that characterize
the fundamental statistics of fragmentation. Understanding these timescales will directly
support the statistical modeling of bubble size distributions through PBE. Additionally, the
understanding provided by these statistical timescales will provide robust ways to compare
disparate mechanistic models of fragmentation.

In this work, we elucidate and quantify three fundamental timescales of fragmentation
for moderate- to large-We HIT. In order of magnitude from small to large, these are: the
bubble relaxation time 7, which characterizes the time from when a bubble is formed to
when its subsequent dynamics (e.g., the rate of fragmentation) become statistically stationary,
the (well-established) bubble lifetime 7, which characterizes the time from when a bubble
is formed to when it undergoes fragmentation (Martinez-Bazan et al., 1999a), and the
convergence time 7. which characterizes the time needed for the air to go from the scale
of the largest bubble, radius a,,,y, to the Hinze scale, ay. In section 5.2 we examine how
these timescales relate to statistical modeling of bubble size distributions through PBE. In
previous work, 7. could not be described for realistic fragmentation statistics (Deike et al.,
2016; Qi et al., 2020). In section 5.3 we develop a Lagrangian mathematical description
which provides the speed at which volume moves through the fragmentation cascade. This
volume-propagation speed allows us to derive 7, for realistic fragmentation statistics at large
We. We prove that, unlike typical fragmentation statistics, the volume-propagation speed
can be obtained independent of the time interval used for measurement. Using DNS of
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moderate- to large-We bubble fragmentation in HIT (described in section 5.4), in section 5.5
we use ELA to measure fragmentation to quantify the three fundamental timescales. In
section 5.6 we discuss the new insights provided by the quantification of these timescales:
7, shows hysteresis can be neglected in PBE, and 7, provides a new constraint on large-We
fragmentation models.

5.2 Three fundamental timescales of fragmentation

To define characteristic timescales of fragmentation, we start by reviewing the statistics
typically used to describe fragmentation. As introduced in section 1.2, the fragmentation
source term in the PBE can be split into a destruction and a creation term,

Sr(a) = Si(a) = Sy(a), (1.4)
where the destruction term (assuming a Poisson process) is
St(a) = 2(a)N(a). (1.5)

This introduces the first fragmentation statistic £(a), the fragmentation rate (dimensions
[1/T]). The creation term S;(a) describes when any bubble of radius @’ > a fragments to
form a bubble of radius a. This can be written as an integral,

S}(a) = / ﬁl(a’)ﬁ(a;a')S}(a') da’, (5.2)

where we have the other two fragmentation statistics: m(a’) is the average number of
daughter bubbles created by fragmentation of a parent of radius a’; and S(a;a’) is the
daughter-size distribution, expressed as a probability distribution function of daughter radius
a for a given parent radius a’. Fragmentation cannot create or destroy air, only move it
between bubble sizes. Expressing this volume conservation requirement is easier if we write
the daughter-size distribution in terms of a volume ratio v* = (a/a’)?, giving a daughter-size
distribution f;; related to 8 by

d'Blara’) =30 f(viid). (5.3)
Volume conservation requires the distribution satisfy (Martinez-Bazan et al., 2010)
1
n‘a(a')/ vify(via)dvt = 1. (5.4)
0

While there is great variety in models for m(a’) and S(a,a’) (Liao & Lucas, 2009),
models for Q(a) generally follow

Q(a) = Co(Wep)e'Pa™?/3, (5.5)

where Co(Wep) approaches a constant value Cg o, as We — oo. Dimensional analysis shows
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Cg could also depend on Reynolds number and an additional parameter, such as the ratio
between parent-bubble radius and the Kolmogorov scale, a/nr, implied by Qi et al. (2022);
however, the power-law scaling in (5.5) is robust at large Wep (Martinez-Bazan et al., 2010).
Assuming Wep ~ oo to neglect surface tension, this scaling can be arrived at mechanistically
by dividing the characteristic velocity of the turbulent fluctuations on the scale of a bubble
(~ e13g1/3) by the characteristic length a bubble must deform to fragment (~ 2a) (Garrett
et al., 2000). A model for moderate to large We based on the assumption that the rate of
fragmentation is proportional to the difference between the deforming force of turbulent
fluctuations and the restoring force of surface tension is

Co(Wep) = Co.e\1 — Wey/Wep, (5.6)

with Co o =~ 0.42 from experiments (Martinez-Bazan et al., 1999a; Martinez-Bazan et al.,
2010).

5.2.1 Bubble lifetime, 7,

The first fundamental timescale is the expected lifetime of a bubble, 7,, To define this, we
start by defining pfrg(a; T) to be the probability of fragmentation over some measurement
interval T, i.e., the probability a bubble of radius a present at time ¢ will fragment before
the next measurement at time ¢ + 7. For convince, let t = O be the time a bubble is created.
The probability distribution function for the bubble lifetime £ is d pfrae /0T and the expected
lifetime 7, = E[£] can be calculated. If we assume, as is done in PBE, that the fragmentation
rate of a bubble is independent of the time since its formation, then

pfrag(a;T) =1-exp[-TQ(a)] , (5.7

and the expected lifetime is 7, = 1/Q(a).

5.2.2 Relaxation time, 7,

For (5.7) (and by extension (1.5) and the PBE (1.2) in general), we assume that the statistics
describing fragmentation are independent of bubble age, which we will refer to as the
no-hysteresis assumption. This no-hysteresis assumption means that the (statistical) behavior
of a bubble after it is created by fragmentation should be indistinguishable from a bubble
that has existed for a much longer time. For PBE modeling, it is desirable to assume the
effect of hysteresis is negligible; however, at least over short timescales, this seems unlikely
physically, as a young bubble must be significantly deformed from equilibrium. Regardless
of the mechanistic explanation for fragmentation (either the result of accumulation of surface
oscillations (Risso & Fabre, 1998) or a single-sufficiently strong eddy (Martinez-Bazan et al.,
1999a)), we expect a young bubble to be more likely to fragment, violating no-hysteresis.
Although the physical mechanism for hysteresis is unclear, we posit that there exists a
timescale 7, below which it is relevant, and above which it is negligible.

To define 7, more formally, we start by investigating how Q(a) can be related to
measurable quantities. As infinitely small temporal resolution is unobtainable, a finite
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measurement interval T is inherent in the measurement of fragmentation events, in both
experiments and simulations (Vejrazka et al., 2018). The validity of the no-hysteresis
assumption depends on the timescale T one uses to define fragmentation events (Solsvik
et al., 2016), as some T is inherent to any measurement, we will allow for measured
fragmentation statistics to depend on 7. We rearrange (5.7) to define the T-dependent
fragmentation rate

Q(a;T) = —In[1 = perag(a; T)| /T . (5.8)

For large We where daughter bubbles will eventually fragment, it is clear that 7z must also
depend on T', and therefore, by (5.4), so must f;;. Thus, let m(a’; T) be the expected number
of daughters present at 7 + T if the bubble fragments and f};(v*; @', T) be the size distribution
of these daughters. In the absence of hysteresis 2(a;T) would be independent of 7', but the
physical dependence of these statistics on 7" makes them difficult to relate to the statistics
describing fragmentation in the PBE (Solsvik et al., 2016). We posit that there exists a
timescale 7, such that Q(a;T > 1,) = Q(a) is independent of T'. It follows that 7, > 7, is
required for the no-hysteresis assumption to be valid in PBE.

5.2.3 Convergence time, 7,

As presented in Chapter 1, N(a) o a~'%/3 is the equilibrium solution (9N /8t = 0) to the
PBE with only the fragmentation source term (Garrett et al., 2000), or as more recently
shown fragmentation with cut-off power-law entrainment, where the size distribution of
the bubbles injected by entrainment follows a power law /(a) oc a” where y > —4 (Gaylo
et al.,2021). The time, 7, it takes to reach these equilibrium solutions is of interest: if 7,
is much less than the timescale over which the flow is transient, we expect an equilibrium
fragmentation cascade (generally N (a) o a~'%/3) to be obtained. Gaylo et al. (2021) provide
an expression for 7. which allows for arbitrary f;; and /m, but its derivation is specific to
power-law entrainment. For general fragmentation cascades, 7. is characterized by the
time it takes for the volume of the largest bubble (radius a,,,y) to reach the Hinze scale ay
(Deike et al., 2016; Qi et al., 2020). This characterization is useful because it allows 7,
to be measured independent of the evolution of N(a). Additionally, being directly related
to fragmentation, it could provide a constraint on the fragmentation statistics in PBE (Qi
et al., 2020). However, current derivations of 7, from fragmentation statistics assume that
bubbles break into identically sized daughters, ignoring the effect of f;;. Although Monte
Carlo simulation can be used to determine what 7, is predicted by given fragmentation
statistics (Qi et al., 2020), the lack of a general analytic expression relating 7. to realistic
fragmentation statistics precludes the reverse; it is unclear how a given value of 7, constrains
fragmentation statistics.

5.3 Describing 7. using a Lagrangian description of frag-
mentation cascades

In this section, we derive a general analytic expression that relates 7. to realistic fragmentation
statistics. Previous derivations of 7. assume identical fragmentation and that the life of a
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bubble is exactly (rather than on the average) equal to 7, so that the cascade can be treated
as a series of discrete deterministic fragmentation events (Deike et al., 2016). While this
approach provides the general physical scaling of 7, it is unable to directly relate 7 to realistic
fragmentation statistics. In this section we use a Lagrangian air particle-based mathematical
description of the speed at which volume moves through fragmentation cascades to derive
7.. We note that this is a “speed” in the abstract sense as it measures how quickly air moves
from large bubbles to small bubbles through the fragmentation cascade rather than through
physical space. However, this description is useful as, through this speed, 7. can be related to
realistic fragmentation statistics and this speed is also directly accessible from volume-based
bubble-tracking (Gaylo et al. 2022; see also Chapter 3). Although T-independence is obvious
when 7, is obtained through the evolution of N (a), it is less clear when 7, is obtained through
fragmentation statistics, which generally depend on 7. We show that our approach allows
fragmentation statistics-based measurement of 7. independent of 7.

Throughout this section, we consider large Wep > Wep so that we can assume that
fragmentation statistics are scale-invariant and simplify (5.6) to a Heaviside step function:

Co(Weg) = Coo H (1 — Wey /Wep) . (5.9)

In the following derivation, we also assume no-hysteresis, limiting applicability to timescales
much larger than 7,.

5.3.1 Lagrangian-based mathematical description of fragmentation
cascades

Previous work on the movement of volume in fragmentation cascades applies Eulerian
descriptions, focusing on volume flux. To find the equilibrium between entrainment and
fragmentation, Gaylo et al. (2021) balance the flux of volume in and out of the set of bubbles
of a given range of sizes. To evaluate locality, Chan et al. (2021b) study the flux of volume
from bubbles larger than a given size to those smaller. Eulerian descriptions are useful
to model the volume flow in and out of specified bubble sizes, but to derive 7. we need
to understand how any specific air volume flows through the entire cascade. For this, a
Lagrangian description is more direct.

Consider how a single Lagrangian particle of air p moves through a fragmentation
cascade, illustrated in figure 5-1. We define the function a, () to be the radius of the bubble
that contains the particle of air p at time . We note that, because one bubble breaks up into
two instantaneously, a, () is a step function that does not have a well-defined derivative.
Still, we can use a, (t) to write a simple expression for expression for 7.: Defining time for a
particle such that a, (t = 0) = @y, our interest is the expected time for the particle to reach
the Hinze scale,

1. =E{min{t : a,(t) <aun}}. (5.10)

The expected value here refers to an ensemble average over an arbitrarily large set of particles
p.

Before addressing (5.10) directly, we need to develop a relationship between the ensemble
average behavior of these particles and the previous bubble-based statistical description of
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Figure 5-1: (a) Schematic of the Lagrangian description showing the path of a Lagrangian air
particle p through a sequence of fragmentations from large to small radii, ag, a1, . . . a,, of the bubble
containing p; and (b) the corresponding function a, (¢) describing the evolution of this bubble radius.
Describing the radius of the bubble containing p as a function of time allows a propagation speed of
p through the cascade to be defined.

) a1
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fragmentation. This is easier in terms of bubble volume rather than radius. Incorporating
the measurement interval 7', for a given particle p we define the volume ratio between the
bubble containing p at time ¢ and the bubble containing p at time ¢ + 7"

ve(t:T) = [ap(t +T)ay(n)]’ . (5.11)

If the bubble containing p at time ¢t does not fragment over the measurement interval 7', then
vg = 1. Trivially, any moment n of the distribution of vz given no fragmentation is

E{[vg(T*)]" | no frag} = 1. (5.12)

We now consider the case where the bubble containing p at time ¢ fragments, in which
case vg depends on the size of the daughter bubble that p ends up in. It is important to note
that the probability p ends up in a given daughter is equivalent to v*, the ratio of the volume
of the daughter to that of the parent. For example, if the bubble containing p broke up into
two dissimilar daughter bubbles, the larger bubble three times the volume of the smaller
bubble (v* = 3/4 and v* = 1/4 respectively), p would have a 3/4 probability of ending up
in the larger bubble and a 1/4 probability of ending up in the smaller bubble. With this
subtlety in mind, the probability distribution function for v given that fragmentation occurs,
SV | frag 18 related to the previous fragmentation statistics through

fvr 1tag(VR: 8, T) =m(ap(2);T) vr fy(vriap(1),T). (5.13)

We assume these statistics are scale invariant and introduce the non-dimensional parameter
T* = Te'Ba,(t)"2/3. This gives

fog 1 trag VRS TY) = m(T*) vg fy (VR T7), (5.14)
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and any moment #n of the distribution is given by

1
E{[ve(T")]" | frag} :m(T*)/O VLR T dv* (5.15)

To find the total distribution of vg, we combine (5.12) and (5.15) using the law of total
probability,

E{[va(T")]"} = Prag E {[va(T)]" | frag} + (1 = pirag) - (5.16)
Rearranging a little,
1 - E{[vr(T)]"} = prrag (1 — E{[vr(T*)]" | frag}) . (5.17)

Assuming no hysteresis, we use (5.7) to describe pyrg. Applying (5.9), the simplified model
of Co(Wep), and writing in terms of 7% = T81/3ap(t)_2/3, we have

Pirag(T") =1 —exp[-Coe T (5.18)

for within the fragmentation cascade (a, > ag). Finally, we can relate the distribution of vg
to the classical fragmentation statistics,

1
1—E{[VR(T*)]”}=(1—exp[—cg,mT*])[1—m(T*)/O VL0 T dve| L (5.19)

5.3.2 Defining the volume-propagation speed in a fragmentation
cascade

To obtain 7., we derive a metric that measures the speed at which Lagrangian air particles
move through fragmentation cascades. To derive a speed, we must first define the “location,”
x(1), of a Lagrangian air particle p within the cascade. In this case location refers to some
abstract scalar bubble-size metric within the cascade rather than a physical spatial coordinate.
This means we have great freedom in how we map a,(t) to location x(#). We choose a
mapping such that the average of the associated speed s(f) = x(¢) is constant for a, (1) > ay.
A constant average speed is necessary for many of the properties that will follow and, as a
result of the scaling in (5.5), is achieved only by x(¢) o a, (1)2/3. We choose

x(1) = e a,(1)?3, (5.20)

which has dimensions of time, so that, in addition to being constant, the time-derivative of
x(1),

2 ind
s(r) = -3¢ Va, (1) 1/35%(;), (5.21)

is also positive and non-dimensional.
Because a, () is a step function, the derivative in (5.21) is ill defined. However, we can

96



take the time-average of s(¢) over a measurement interval 7',

1 t+T
(s(t))r = ?‘/ s(t)ydr’ . (5.22)
t
This gives

x(t+T)—x(t) 8_1/30p(t)2/3
T - T

(s(O)r = (1-e@1??) . 523)
where (5.11) defines the volume ratio vg(#; T). As we have assumed scale-invariance, we
can then introduce non-dimensional time 7* = Te'/3a »(1) ~2/3 to obtain

1 - [vg(T*)]*°

(s())r = T : (5.24)

This equation gives the time-averaged propagation speed for a single particle.
Next, we perform an ensemble average to get

1= B{lvR()*?}

E{(s(0)r} = ~

, (5.25)

the expected time-averaged speed for an ensemble of (independent) Lagrangian air particles.
Using (5.19) with n = 2/9, we obtain

1 —exp[-Co.oT"]
CooT*

1
E{(s())r} = Ca.co [1—11‘1(T*)/0 v*“/9fv*(v*;T*)dv*]. (5.26)

The limit 7% — 0 gives the expected instantaneous speed,

1
5= Jim B (6(0)r) = Ca [1-m [ 075000 62)
- 0

where 7m and f;;(v*) describe the fragmentation statistics for 7* — 0 and are equivalent to
those in (5.2).

Hereafter, we refer to s as the volume-propagation speed of a fragmentation cascade.
Although the size locations of individual Lagrangian air particles in the cascade follow step
functions, by commuting time averaging and ensemble averaging, we are able to obtain
an average instantaneous speed for particles in the cascade. This speed § can be related to
fragmentation statistics measured over finite intervals 7" with (5.26), or the instantaneous
statistics used by PBE with (5.27). The relationship between the two is explored in §5.3.4.
In §5.3.3 we use 5§ to provide 7.

5.3.3 Describing convergence time, 7,

As intended, our choice of the definition of location within the cascade, x(z), makes 5
constant for a, () > ay. This constant speed means that, despite x(#) being a step function,
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Figure 5-2: The effect of We™ on 7 as modeled by (5.29) (——) compared to Monte Carlo
simulations of daughter distributions, e, A; +, B; <, C; 0, D; O, E; O, F (see table 5-1). (5.9) is used
to model the Hinze scale. The 95% C.I. on all 72 is < 1%.

after a sufficient number of steps, we can treat fragmentation as a continuous process and
apply the approximation x(¢) ~ ts with reasonable (statistical) accuracy. Thus, we can
approximate 7. as the distance in x between a,,,, and ay divided by this speed,

(8—1/3amax2/3) _ (8—1/3aH2/3)

S

(5.28)

TC:

1/3

Nondimensionalizing 7} = 7. & Amax 23 and defining We,,,, to be the Wep associated

with a4y,

75 = Cr [1 = (Wemar/Wer) ™| 5 C.=1]5. (5.29a,b)

Despite the approximation used to derive (5.28) from 5 in (5.27), (5.29) is expected to be
valid for We* = We,,, ./ We not small (where multiple fragmentation events are generally
necessary to reach agy). This is confirmed by Monte Carlo simulations of prescribed
fragmentation statistics (figure 5-2).

For We ~ oo we recover the same 7, o £ 1/3a,,4,:2/3 scaling as previous work which

assumes identical fragmentation (Deike et al., 2016). This scaling of 7, is like 7,, demon-
strating that the fragmentation rate is the dominant factor in determining 7.. Our propagation
speed-based analysis provides the scaling constant C; which quantifies the contribution of
fragmentation rate, as well as fragmentation statistics /m and f;,(v*). For large-but-finite We,
(5.29) captures the effect of the We-driven separation between a,,,, and ay on the value
of 7.; however, we note that the scaling or 7. with We will be more complex for small We
(We ~ Wep) as we have not incorporated the effect of finite-We on fragmentation rate, such
as modeled by (5.6), into our propagation speed-based analysis. In section 5.5.3, DNS shows
for what sufficiently large We this effect is negligible.

Although primarily driven by fragmentation rate, 7. is also related to the fragmentation
statistics 7 and f;(v*) (Qi et al., 2020), which is now quantified by the scaling constant C-.
To describe these relationships, we follow Gaylo et al. (2021) and isolate the effect of f;,
from m through a daughter-distribution constant C, defined as the ratio between C; and a
C: found using the same 71 but identical fragmentation, f;;(v*) = 6(v* — 1/m), where ¢ is
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Daughter Distribution m fo(v¥) Cy Cy*
A Valentas et al. (1966) 2 o(v: —=1/2) 1 1
B Martinez-Bazdn et al. (1999b) 2 (V)29 (1 = v*)?/° 1.348 1314
C  Tsouris & Tavlarides (1994) 2 213 — (v)23 — (1 —y*)?3 2432 2255
D Martinez-Bazén et al. (2010) 2 (V)0 (1 =)™ 1.782 1.712
E Diemer & Olson (2002) 3 (V4 (1 = v*)3? 1269 1.253
F Diemer & Olson (2002) 4 (VY2 (1 = v)7? 1.190 1.185

Table 5-1: Daughter distributions used in Monte Carlo simulations and corresponding daughter-
distribution constants Cy defined by equation (5.30) compared to C ¢* defined by Gaylo et al. (2021,
Eq. (4.3)). Note, a constant to ensure f Sy (v*)dv* = 1is omitted for brevity.

the Dirac delta function. This gives

Cf/C_Q,oo . 1 —m 29
_ == = .
2/9 1_’,71/01 v*“/9f‘j(v*)dv*

(5.30a, b)

" om

In table 5-1 we compare this Cr for general fragmentation cascades to the similar constant
(hereafter denoted as C*) derived by Gaylo et al. (2021) for the special case of power-
law entrainment. The values are nearly equivalent, and, noting that (9/2)(Inm)~' ~
(1- m2 N=1(5.30) predicts similar 7. as Gaylo et al. (2021) for their special case.

5.3.4 Measurement-interval independence of volume-propagation
speed

A consequence of 5 being constant for a,(¢) > ap is that the time-averaged value and the
instantaneous speed are equal, E {(s(¢))r} = 5, so long as a,(t + T) > ay. Thus, to obtain
5 we must choose a T such that Pr{a(t + T) > ay} ~ 1. For measurements of an initial
parent-bubble radius a = a,(¢), we define an upper bound 7y as the interval we expect
a,(t+Ty) ~ ag and require T < Ty. Through the same arguments used to derive 7, this
upper bound is

T < &' Pa*3C, [1 - (Wep/Wep)™P] . (5.31)

For a = a4y this is simply T <« Ty = 1.. From Monte Carlo simulations of prescribed
fragmentation statistics measuring initial bubbles a = a4y, figure 5-3 confirms that E {(s)7}
gives an exact, T-independent measurement of s for 7 < 7.. Ty provides an upper bound
on T for experiments or simulations, although we point out that it is an a posteriori measure
because C; is derived from 5.

Finally, T-independence means d E {(s(¢))7-} /dT* = 0. Taking the derivative of (5.26),
we obtain

dE{[vr(T))]

T*
dr*

—]E{[VR(T*)]Z/g} +1=0, (5.32)
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Figure 5-3: Measurements of E{(s)r} from Monte Carlo simulations of daughter distributions A—F
(see table 5-1) at a range of 7'/7., normalized by 5 calculated using (5.27). Colors based on We*:
green, 2; red, 50; blue, 100; magenta, 200, where (5.9) is used to model the Hinze scale. The 95%
C.L on E{(s)r} for T /7. < 1is < 3%.

which is solved by
=B {[vr (@)1}

T = Constant , (5.33)
where c is some constant. With (5.19) this gives,
1 —exp[-Co o T* 1
Xp[T* 20 T] [1 - M(T*)/ TR Y (s ) dv*] = Constant . (5.34)
0

This bounds how scale-invariant fragmentation statistics m(7™*) and f;(v*; T*) can depend
on 7™ and provides insight into the relationship between m(7*) and f;(v*; T*) measured at
large 7™ versus the theoretical T* — 0 limiting case used in PBE. This is useful because
a finite relaxation time 7, implies a lower bound (7" > 7,) for measuring fragmentation
statistics that are compatible with the PBE no-hysteresis assumption.

5.4 Direct numerical simulation of bubble fragmentation
in homogeneous isotropic turbulence

Using the solver described in Chapter 2, we perform DNS of populations of bubbles
fragmenting in HIT. During these simulations, ELA allows direct measurement of individual
fragmentation events (Gaylo et al. 2022; see also Chapter 3). A summary of the DNS
performed is provided in table 5-2. In section 5.5 we will use these measurements of
fragmentation to quantify the three fundamental timescales of fragmentation.

5.4.1 Simulation setup

The simulation can be broken into two phases. For the first phase, we develop steady single-
phase HIT. To initialize the second step, we take the velocity field from the single-phase HIT
and create bubbles by prescribing the VOF field. We measure the fragmentation of these
bubbles.

100



Wer Rer Wep A/nr Wen AJam  Ngms Nirag Co C;
400 200 101-142 1.1 0.66 0.71 7 213 1.64+£042 89+1.9
22 066 093 7 106 0.60+0.13 16.1+2.9
. . . . + 0. N N
2000200 070105 0l 7 08 Lstsosd 98s28
0.7 022 031 5 187 1.77+026 10.3+2.1
100 200 25-36 1.1 0.16 0.31 7 218 1.50+£0.27 10.0+2.3
50 200 13-18 1.1 0.08 0.20 7 174 093+0.13 152+29
25 200 63-89 1.1 004 0.13 7 113 0.44+£0.12 27.1+5.5

Table 5-2: Summary of HIT simulations performed and values measured using Atg/t, = 0.4,
including 95% C.I.. Ngins is the number of simulations (each with different initial bubble populations)
and N is the total number of fragmentation events. ay is calculated using Wey ~ 7 from §5.5.2.

To develop the initial turbulent velocity field for the simulation, we use the linear forcing
method described in §2.1.5 on a triply periodic cubic domain. Following Rosales & Meneveau
(2005), we choose the forcing parameter A = 1/3 and domain length L = 5.2751 to obtain a
characteristic turbulent dissipation rate € = 1 and velocity fluctuation u;ns = 1. Anequivalent
interpretation is that we use the characteristic turbulent scales to nondimensionalize all
values in the simulation (i.e., to go from (2.1b) to (2.5)). For all simulations we set Re = 200
in (2.5). Because we have nondimensionalized by the characteristic turbulent scales, the
turbulent Reynolds number is the same, Rer = u .p, /eu,, = 200. The velocity field is
initialized with random noise, and then the single-phase simulation runs until u.,s and &
reach a statistically steady state.

Using the single-phase HIT as the initial velocity field, we perform simulations with
an ensemble of different initial air-water! bubble populations, all with void fraction ~ 1%.
Populations are created by randomly distributing (without overlap) spherical bubbles with
radii between 3L /256 and 15L/256 following N(a) « a~'%/3. By repeating the random
generation and distribution of bubble populations in the (same) initial HIT velocity field,
unique but statistically similar initial bubble populations are generated to provide statistical
variation between our ensemble simulations.

After applying the VOF field describing the initial population of (spherical) bubbles,
we continue the simulation. Although this abrupt introduction of bubbles to previously
single-phase HIT is non-physical, numerical simulations rapidly adjust (Yu et al., 2019;
Riviere et al., 2021). As the bubble population evolves under the effects of fragmentation,
we continue to apply linear forcing, but (as discussed in §2.1.5) we only apply it to regions
of water. This maintains € ~ 1 and u;ns ~ 1. For the two-phase simulations, we apply a
range of We to obtain different turbulent Weber numbers, Wer = 3, ../e(o/p,,), shown in
table 5-2.

IFor this chapter, we use A = 0.001 and 57 = 0.01, only slightly different than A = 0.00123 and 5 = 0.0159
used elsewhere.
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Figure 5-4: Evolution of the f = 0.5 iso-surface in the three-dimensional HIT simulation with
Wer = 100.

Figure 5-5: Average bubble size distribution N(a) for Wer = 100 simulations at times: O, t/t, = 0;
O, t/te = 1; and 0, 1/t = 3. N(a) « a~'%/3 is provided for reference over the range of initialized
spherical bubbles (— — —) and the range of measured parent bubbles, ag < a < 1.2ag (—).

102



For one of the Wer = 100 simulations, figure 5-4 shows the evolution of the bubble
population. Based on averaging over the ensemble of 7 Wer = 100 simulations, figure 5-5
shows the evolution of the bubble size distribution N(a). We note that, with our focus on
bubbles a > ap, the transition to a distinct power-law regime for N(a < ap) is not captured
(Deane & Stokes, 2002). During the evolution, we use ELA to measure fragmentation
statistics for parent bubbles of radii ag < a < 1.2ag, where ag = 7L /256 provides a balance
between the number of observed fragmentation events per simulation and resolution of the
daughter bubbles. By initializing the bubbles to follow an equilibrium fragmentation cascade
N(a) o< a='%3 (Garrett ez al., 2000), the fragmentation of bubbles a > a¢ maintains the
population of bubbles a ~ aq for t/t, < 3, where

1 = (0.42) 1713423 (5.35)

is an a priori estimate of 7, (Martinez-Bazén et al., 1999a). To exclude the fragmentation of
the initial set of spherical bubbles (see figure 5-4), we study fragmentation over 1 < ¢/z,.
Thus, by measuring fragmentation statistics over 1 < t/t, < 3, we measure a quasi-steady
population of parent bubbles that are realistically formed by a fragmentation cascade.

Chapter 3 explains how ELA allows us to identify fragmentation events and measure
the daughter bubbles (see §3.2.2 for details). An important note is that ELA measures the
evolution of bubbles between snapshots " and M1 = " + At,. Thus, the measurement
interval T discussed in section 5.2.2 for general (experimental or numerical) measurements
of fragmentation is equivalent to Az, for ELA measurements.

5.4.2 Grid independence

As discussed in Chapter 2 (see §2.1.4), the choice of grid size, A, is driven by resolving
the Kolmogorov microscale (A/nr < 1) and surface tension (Wep < 1 and/or A/ag < 1).
Based on these metrics we find L/A = 256 (A/npr = 1.1 in table 5-2) resolves turbulence
and surface tension for our entire range of Wer.

In addition to resolving the general physics, another grid resolution concern is resolving
the daughter bubbles produced by a fragmentation event. With no clear lower limit to the
ratio between the daughter-bubble and parent-bubble volume (v*), grid resolution limitations
require us to filter out daughter bubbles of radius a < 2A. Figure 5-6 shows that the bubble
size distribution of filtered bubbles, N(a > 2A), is grid independent. For L/A = 256 and
parent bubbles ag = 7L /256, daughter bubbles of radius a < 2A correspond to v* < 0.02.
While this filter prevents us from measuring the full range of possible daughter bubbles,
especially sub-Hinze daughters, we expect this to have little effect on the statistics of interest
for two reasons. First, sub-Hinze bubble production by fragmentation happens concurrently
with the production of large daughter bubbles (Riviere et al., 2022), so excluding small
daughters should not affect the measured rate of fragmentation used to obtain 7, and 7.
Second, for 7., the integral of the daughter-size distribution in (5.30) weights local daughter
production (v* ~ 1/m) over non-local daughter production (v* < 1), making the contribution
of the excluded small daughters small. This is related conceptually to locality, which suggests
v* < 1 can be neglected when modeling the cascade (Chan et al., 2021b,c).

To confirm that we resolve turbulence and surface tension, that the filter has a negligible
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Figure 5-6: Average bubble size distribution N (a) for Wey = 200 at time ¢/t, = 3 from simulations
with girds: X, L/A = 128; %, L/A = 192; X, L/A = 256; X, L/A = 384; Horizontal axis is
normalized by A = L/256 and N(a) « a~'%/3 is provided for reference over the range of initialized
spherical bubbles (— — —) and the range of measured parent bubbles, ag < a < 1.2ag (—).
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Figure 5-7: Grid-convergence study for (a) fragmentation rate constant Co and (b) convergence
constant C, based on simulations of Wer = 200 (parent bubbles Wepg = 50 — 71) with different grids,
measured using 7'/t, = 0.4. Error bars indicate 95% C.I..
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Figure 5-8: Measured fragmentation-rate constant Co normalized by (Co),. s, the value measured
using T'/t¢ = 0.4, for Weg of (O) 101-142; (x) 50-71; (O) 25-36; (A) 13-18; (V) 6.3-8.9. Variance-
weighted least-squares fit of all data to (5.37) (———) gives C,, =0.11 and A = 2.2 (R? = 0.954).

effect, and (more broadly) that the statistics we measure are independent of the grid, we
perform a convergence study for Wer = 200 using three additional grids, L/A = 128, 192,
and 384. The results of this convergence study (see figure 5-7) show that our measurements
of fragmentation statistics E {(s)7} and pgag(a;T) (from which the timescales will be
calculated) are grid independent for L/A > 256.

5.5 Estimating the fundamental timescales using Eule-
rian label advection

5.5.1 Relaxation time, 7,

We first seek the relaxation time, 7. For each simulation, we use 6 instances of ELA with
different measurement intervals 7 = At;. Using (5.5) and (5.8), we calculate the value of
Co(Wep;T) from each pga(a; T) measured using ELA:

—In [1 - pfrag(a; T)]

(5.36)

Figure 5-8 shows how T affects the value of Co(Wep;T) for a range of Wep. If the no-
hysteresis assumption were valid for all T, Cg would be a constant for each Wep; however,
figure 5-8 shows a strong dependence on small 7* = Te!/3472/3,

We observe that the dependence of Co(Wep;T) on T is approximately exponential,
which provides an empirical definition of the relaxation time 7, as well as the hysteresis
strength A:

Co(Wep;T)/Co(Wep;T = o0) =1+ Aexp|-T/7/]. (5.37)

We observe that 7, scales like 7,. Thus, we define the scaling constant C, and write
7, =Cre ' 3a?3, (5.38)

where least-squares regression of the combined data for all Wep gives C, = 0.11 and A = 2.2,
with a coefficient of determination R? = 0.954. As shown in figure 5-8, (5.37) does a good
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Figure 5-9: Fragmentation rate constant C¢o as functions of Wepg, measured using 7'/t; = 0.4. Error
bars indicate 95% C.I.. Variance-weighted least-squares fit to (5.6) (——-) gives Weyg = 6.9 and
Co.co = 1.4 (R? = 0.890).

job explaining the dependence of Co(Wep;T) on T for all Wep considered.

The scaling of 7, being like 7, rather than, say, bubble natural period, We;/ 27136283,
is notable because it suggests that, at least for Wep > Wep, the physical mechanisms for
the decay of hysteresis are not related to surface tension. Future, more detailed, studies
of the dynamics of individual bubbles are necessary to understand hysteresis and identify
the mechanisms for its decay. Rather than focus on the mechanism of hysteresis, for our
statistical study of fragmentation our primary concern is more pragmatic: answering when
T > 7, and hysteresis can be neglected. Hereafter, we measure all results with 7'/t, = 0.4
(corresponding to T'/7, ~ 8), which guarantees that effect of hysteresis on our estimation of
7¢ and 7, is negligible.

5.5.2 Bubble lifetime, 7,

We now seek the expected bubble lifetime, 7,. Figure 5-9 shows our measurements of
Co(Wep) and the fit to the model by Martinez-Bazén et al. (1999a), repeated here for clarity:

Co(Wep) = Co.ooV1 — Wey /Wep . (5.6)

Non-linear least-squares regression gives Wery = 6.9 and Cg o, = 1.4, with a coefficient of
determination R% = 0.890. For Weg > Wey, this gives a bubble lifetime

7 = (Cae) & 1Pd?. (5.39)

Compared to previous work, our value for the Hinze scale, Wey = 6.9, is similar to
Wep = 4.7 measured by Martinez-Bazén et al. (1999a) and Wey = 2.7 — 7.8 by Risso &
Fabre (1998). However, we obtain Cg o = 1.4, greater than Cgo . = 0.42 measured by
Martinez-Bazan et al. (1999a) and Cg , = 0.95 from HIT simulations by Riviere et al. (2021).
This means we predict a shorter 7, than previous work. An important distinction between
our fragmentation measurements and previous experimental and numerical measurements is
that we measure bubbles that have been formed as the daughters of previous fragmentation,
so the bubbles are already distorted by fragmentation.

To confirm that our larger value of Cg  is due to the way bubbles are created, we
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Figure 5-10: Convergence constant C (a) as functions of Weg, measured using 7'/t, = 0.4 and (b)
as a function of T for Weg = 50-71. Error bars indicate 95% C.I.. The estimated large-Wepg value of
C; =9 (- —-) is included for reference.

repeat the measurement of fragmentation statistics, but this time over an earlier time in our
simulation, 0 < t/t, < 1, when (as opposed to the later time 1 < t/f, < 3) many parent
bubbles which started spherical have not yet fragmented. When we measure this earlier time
range (denoted by (-);<;,), we obtain a similar (Wep);<;, = 7.0 but an appreciably smaller
(Co.0)i<t, = 0.88 (with R? = 0.974). As our interest is bubbles within fragmentation
cascades, our value of Cg o = 1.4 is more relevant for bubbles formed by fragmentation.

Finally, we note that 1/Cg « is an order of magnitude larger than C,, meaning that
7r > 7,. As discussed in section 5.2.2, this confirms that no-hysteresis assumption, a key
assumption for PBE, is reasonable when modeling fragmentation cascades.

5.5.3 Convergence time, 7.

We now seek the convergence time, 7.. ELA gives us direct access to measure the (7-
dependent) size distribution of daughter bubbles (shown in Appendix E), from which
E{[vg(T™)]"} can easily be calculated. With (5.25), this gives us the time-averaged speed
E {(s)r-}. If (5.31) is satisfied and T > 7, so we can neglect hysteresis, we expect E {(s)7r}
to give a T-independent measurement of C; = 1/5. Figure 5-10a shows the value of C; we
obtain over a range of Wep using T'/t; = 0.4 (T /7, ~ 8). Recall that the model we developed
in section 5.3, as a result of large-Wep assumptions, predicts a constant C,. We find that
this is accurate for We > Wep, or more specifically We > 30. In this large-Wep regime, we
measure C; =~ 9.

To validate that our measurement is 7-independent, for Wep = 50-71 we also measure
C; using a range of T (figure 5-10b). As expected, for T < 7, we see a dependence on T
due to hysteresis, but for 7 > 7, C; is independent of 7. In addition to the 7, lower bound,
(5.31) implies an upper bound on the choice of T. However, for all the 7" we consider, (5.31)
(with C; =9) gives T < Ty for Wep > 30. This means the Hinze scale driven upper bound
on T-independence described in §5.3.4 is not relevant to these measurements.
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5.6 Discussion

We now examine how our quantification of the three fundamental fragmentation timescales
informs the general study of fragmentation.

5.6.1 7, informs choice of measurement interval

For 7,, our results suggest that the physical mechanism for the decay of hysteresis with
bubble age is independent of surface tension for Wep > Wey and that 7, scales like 7,. The
respective scaling constants we estimate from DNS of HIT differ by an order of magnitude
(C, < 1/Co ), suggesting that 7, < 7, is always true for Wep > Wey. Although the
physical mechanism for the decay of hysteresis is still unclear, this shows that hysteresis can
be assumed negligible when modeling fragmentation, validating an essential assumption of
PBE. More practically, knowledge of 7, also informs the choice of measurement interval
in experiments and simulations. 7 > 7, makes the effect of hysteresis on measurements
negligible, ensuring that the measured fragmentation statistics are compatible with PBE.
Applied to ELA, this provides a lower bound on the choice of snapshot interval, Aty > 7,.

5.6.2 7. provides a new constraint on fragmentation models

The insight that the convergence time 7. provides into the evolution of the bubble size
distribution in fragmentation-dominated bubbly flows has been discussed by Qi et al. (2020)
and Deike ef al. (2016), and we have now quantified 7, directly. now quantified 7. directly.
For large Wep where the effect of surface tension on fragmentation rates is negligible, we
find

7o = Cr& Py [1 = (Wepax/Wer) 1] (5.40)

where We,, .. is the bubble Weber number Wep of the largest bubble in the cascade (radius
amax) and we estimate C; ~ 9 and Wey = 6.9 from DNS. In addition, as we can now
express 7. in terms of realistic fragmentation statistics for We > 30, 7. also informs large-We
fragmentation models. Inspired by (5.4), we rearrange (5.30) to provide a new bound on a
moment of the daughter-size distribution f:

1
nﬁ(a')/ v*“/gfv*(v*;a’) dvi=1- (CTCQM)_1 , (5.41)
0

where our estimations of Cr ~ 9 and Cg o = 1.4 from DNS give 0.92 for the right side of
(5.41), independent of parent bubble radius a’. For a physical interpretation, (5.4) bounds
the relationship between daughter-size distributions and 7 to guarantee volume conservation,
while (for Wep > 30) (5.41) bounds the relationship to match the empirical value of 7.
Many existing fragmentation models assume binary breakup (/nm = 2). To evaluate how
well these meet (5.41), we focus on the proposed daughter-size distributions through Cy,
which includes the integral in (5.41). Withm =2, C; # 9, and Cg o = 1.4, (5.30) gives
Cy ~ 1.8. Because Cy indicates how much longer 7. is compared to the case of identical
fragmentation, this shows that 7. is 1.8 times longer for fragmentation in HIT than what
would be predicted if one assumes identical binary-fragmentation. Comparing to more

108



realistic binary daughter-distributions (see B—D in table 5-1), we see good agreement with
the distribution proposed by Martinez-Bazdn er al. (2010). We also compare our Cy to the
binary daughter-distribution model by Qi et al. (2020),

) 1—cos(2nv*) ()34 (1=y*) =43
B (- , 5.42
fV(V ) « |:f01 [1—COS(27TV*)] dv* ] ( (U) |:./(;0038 [(V*)_4/3+(1—V*)_4/3] dv* ( )

who set the tuning parameter w = 0.3 to match experimental measurements of 7.. For this
daughter-distribution model, (5.30) gives Cy = 1.741, in very good agreement with our value
of Cy ~ 1.8. Although we assume m = 2 here for illustration, this analysis is applicable to
any m. Rather than attempting to compare the details of disparate fragmentation models,
relating 7. to the fragmentation statistics specified by these models allows us to directly
compare the physical predictions each model makes regarding the evolution of the bubble
size distribution through a simple scalar quantity.

5.7 Conclusion

As discussed in Chapter 1, a well-known equilibrium for the bubble size distribution is
N(a) o< a~'93 which is the result of fragmentation cascades at moderate and large Wep
(Garrett et al., 2000; Gaylo et al., 2021). More generally, there is an interest in a statistical
model of fragmentation for use in the PBE (1.2). In this chapter we describe three fundamental
timescales characterizing the statistics of fragmentation and the resulting fragmentation
cascade. These timescales directly support statistical modeling of fragmentation, and,
although our focus here is on statistical descriptions of fragmentation, the results here also
help inform future mechanistic study of fragmentation.

One fundamental timescale is the relaxation time 7, which characterizes the time after
fragmentation over which hysteresis cannot be neglected. From DNS measurements, we
provide an empirical definition of 7, based on when measured fragmentation rates become
independent of the measurement interval 7. We find that 7, = C,e13a%3 where C, ~ 0.11
independent of moderate/large We. This Wep-independence suggests the physical mechanism
causing 7, at these Wep 1s unrelated to surface tension. Although understanding hysteresis
and its decay is an area of future work, by providing 7, we identify the timescales over which
hysteresis can be neglected.

A second fundamental timescale is the expected lifetime 7, of a bubble from formation
by fragmentation to further fragmentation. For 17, > 7., 77 = [Co(Wep)]'e~1/3a%/3
is the inverse of the fragmentation rate. Fitting our DNS results for bubbles within the
fragmentation cascade to the square-root model of Wep-dependence by Martinez-Bazéan
et al. (1999a) (eq. (5.6)), we find the Hinze-scale Wey = 6.9, in agreement with previous
experiments, but measure a smaller 7, corresponding to a higher scaling constant (at large
We) Co . = 1.4 (compared to Cg o = 0.42 reported by Martinez-Bazdn et al. (1999a)). We
show that this higher value of Cg « is related to formation of the bubbles by a fragmentation
cascade. For modeling fragmentation cascades, this higher Co « is likely more relevant. In
either case, we find 7, < 7 for all We, validating the use of the no-hysteresis assumption in
modeling fragmentation.
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Finally, we consider the fundamental timescale 7, = C[1—(Wepnay/Wer) 23]~V 3a,zn/ sx,

which measures the time for a Lagrangian air particle to go from the largest bubble to
the Hinze scale. This also characterizes the time for fragmentation cascades to reach the
N(a) « a~193 equilibrium. For large Wep, we derive 7. based on the (constant) expected
speed 5 at which a Lagrangian air particle moves through the cascade. We show that, C; = 1/5
and can thus be measured independent of 7. This result is valid for 7, < T < 7., which
provides a bound on the choice of T in experiments and simulations. The 7T-independence
of C; is confirmed by DNS measurements, which give C; = 9 for Wep > 30, which agrees
well with the values obtained from the fragmentation model of Martinez-Bazan et al. (2010)
and an experimentally-constrained fragmentation model of Qi et al. (2020). The relationship
between C; and fragmentation statistics in PBE provides new constraints on these statistics
at large Wep, limiting the possible forms of fragmentation models.

In the context of modeling the evolution of bubble populations in air entraining FST,
7. is particularly relevant. If the bubble population is dominated by the effects of the
fragmentation cascade, then 7. gives the characteristic time for the bubble population to
converge to N(a) o« a~'93. By quantifying C,, we can now obtain this convergence time 7.
based on the strength of turbulence (&) and the largest bubble entrained by the turbulence
(@mayx). What remains then is to determine if bubble population is actually dominated by
fragmentation. In Chapter 7 we will show it is not beneath air entraining FST. Evidence of
this will include that we do not obtain N (a) o a~'9/3, despite considering bubble population
evolution on timescales much larger than 7.
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Chapter 6

Bubble Entrainment in Free-Surface
Turbulence

In this chapter we focus on bubble entrainment, the /(a) term in the population balance
equation (1.2). The presence of air entrainment is of course the defining characteristic of
air entraining free-surface turbulence, and, by a simple argument, entrainment is the most
important mechanism because it is the original source of all the air beneath the free surface.
In this chapter we consider entrainment by free-surface turbulence, specifically entrainment
of large bubbles where surface tension effects are small. While Yu ef al. (2020) made a
prediction about large bubble entrainment size distribution, they could only measure the
total bubble size distribution N (a) and infer the entrainment size distribution, and it turns
out that their prediction is incorrect. Previously the only measurements of entrainment were
for ~ 100 events (Wei et al., 2019). Using ELA (Gaylo et al. 2022; see also Chapter 3) with
DNS of multiple free-surface flows across a range of scales, we obtain direct measurements
of ~ 60, 000 entrainment events, elucidating the entrainment size distribution /(a).

Key results from this chapter are summarized in “Size distribution of large air bubbles
entrained by strong free-surface turbulence” by Gaylo & Yue (2025).

6.1 Introduction

For the development of general statistical models of the evolution of bubble populations
beneath air entraining free surfaces (i.e., through the PBE), an immediate challenge is that
entrainment itself is one of the least understood classes of bubble evolution mechanisms.
Previous work on entrainment tends to focus on entrainment by specific large-scale flow
structures. One example is the entrapment of a cavity by a plunging breaking wave (Deike
et al., 2016; Chan et al., 2021a; Gao et al., 2021). Another example is entrainment by a
plunging jet (Kiger & Duncan, 2012; Bertola et al., 2018). While these features may be
relevant to specific air entraining flows, Brocchini & Peregrine (2001a) note that a common
feature in a large class of air entraining flows is strong turbulence beneath the free surface.
Examples include the wake behind a vessel, spilling breakers, hydrologic jumps, upwelling
of existing bubble populations, and flows in steep rivers or spillways. Motivated by the
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potential broad applicability, in this chapter we seek to characterize air entrainment that is a
direct result of this strong free-surface turbulence (FST).

As discussed in §1.1, one flow where FST entrainment is relevant is open channel flow,
often studied in the context of hydraulic modeling of rivers and spillways (Falvey & Ervine,
1988; Chanson, 1996). The quantity and size of bubbles is necessary to predict how the
dissolved oxygen content changes due to rapids or spillways (Gulliver & Rindels, 1993), so
a model of bubble entrainment is needed. While some previous work considered bubble
formation by the impact of droplets at the free surface, this mechanism is not believed
to be energetic enough to explain the observed bubbles (Rein, 1998). Wei et al. (2019)
use high speed photography to obtain time series of individual entrainment events. Their
direct measurement of individual entrainment events is unlike the more typical approach of
measuring the entire resulting bubble population (e.g. Chanson & Toombes, 2003). This
gave Wei et al. (2019) new insight into the exact mechanism for entrainment, and they show
that entrainment in open channel is the direct result of the interaction of turbulence with the
free surface. That work shows FST entrainment is relevant to channel flow and provides
what we believe to be the first direct experimental measurement of entrainment by FST.

An inherent challenge in direct experimental measurement of entrainment by FST is that
the free surface is strongly distorted, making visual access difficult. In total, Wei ez al. (2019)
were only able to observe 108 entrainment events, which is insufficient to obtain detailed
statistics on how entrainment scales with bubble size and turbulence strength. For this
purpose, DNS is useful, as all features of the flow are immediately accessible. As discussed
in Chapter 3, identifying individual mechanisms from this wealth of data is not trivial;
however, ELA enables us to, for the first time, identify and measure individual entrainment
events within DNS of complex bubbly flow. In this chapter we perform DNS of a canonical
flow which isolates entrainment by FST from other entrainment mechanisms and use ELA
to obtain a large O(10%) data set of FST entrainment events.

Based on the direct measurement of entrainment events in DNS, we can elucidate the
scaling of the size distribution of FST entrainment with the strength of turbulence and gravity.
This observed scaling is explained and supported by a simple mechanistic model. Although
our results are based on a flow where FST is the only entrainment mechanism, we show that
the same scaling closely describes entrainment size distributions observed in other, more
complex free-surface flows where additional entrainment mechanisms are also present.

6.2 Characterizing air entrainment by FST

From the PBE (1.2), our interest is the entrainment size distribution /(a), where I(a)dadt is
defined to be the number of bubbles of radius [a, a + da] created at the free surface over
time (7,1 + 0t] in the region of interest. As discussed in Chapter 4, an entraining free surface
can be thought of as a locally flat surface (77) plus perturbations by turbulence, in which case
it is natural to normalize /(a) by Afg, the area of the mean free surface in the region of
interest. In §6.2.1 we perform dimensional analysis to obtain, given some basic properties
of strong FST, the set of possible scalings of /(a)/Ars. In §6.2.2 we describe a mechanistic
model of FST entrainment which elucidates the scaling. In §6.3.2 this scaling is confirmed
by direct measurement of /(a)/Arg in DNS.
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6.2.1 Dimensional analysis

As introduced in Chapter 4, the critical parameter for FST is the strength of the near-surface
turbulence relative to the restoring force of gravity, described by a turbulent Froude number

(squared)
e

UrmsE
where g is gravitational acceleration and the strength of near surface turbulence is described
by the dissipation rate £ and the root-mean velocity fluctuations u;ms. In Chapter 4 we
show that for strong FST (Fr% > (.1) the turbulence will be nearly isotropic and follow
the Kolmogorov —5/3 scaling. This means that within the inertial sub range the strength
of turbulence is fully characterized by £ = [L?>T~3]. After normalizing by the density of
water p,,, the energy to entrain a bubble of radius @ = [L] is characterized by gravitational
acceleration g = [LT 2] and surface tension (o /p,,) = [L*T2]. We will assume that
constitutive property ratios, such as the density ratio p,/p,, and the viscosity ratio w,/t,,
are fixed for air and water. This gives that for strong FST I(a)/Ars (dimensions [L73T1])
only depends on

2 _
Fry =

(1.1

I(a)/AFS :?(E,G,g,()'/pw). (61)

By dimensional analysis, we find that the system (6.1) is described by three dimensionless
parameters. While the choice of these parameters is not unique, it is useful to choose one and
only one parameter which includes surface tension o/ p,,. We choose this parameter to be a
Bond number Bo = g(2a)*/(c/py), which describes the ratio of gravitational to surface
energy needed to form a bubble. The critical value Bo = 1 corresponds to the capillary scale,

ac =0.5vo/gpy . (6.2)

For air water (o/p,, ~ 7.03 x 107> m>3/s?) on Earth (g ~ 9.81 m/s?), the capillary scale is
a. ~ 1.3mm. For large bubbles with radii a > a. (i.e., Bo > 1), we expect the effects of
surface tension on entrainment to be negligible, so we drop Bo as a parameter and (6.1)
becomes,

I(a)/Ars = F(e,a,g) fora>a.. (6.3)

By dimensional analysis, the system (6.3) now has only two dimensionless parameters,
say IT; and IT,. We choose € and (2a) as the repeating variables and obtain

(6.4, b)

1 = =

1(a)/Ars | 3 (2a)"13\'?
C elB3Qq) 1137 '

g
Far from critical values of Bo or Fr%, we assume the underlying mechanisms are scale
invariant. This assumption implies a power law relationship, I1; = C;I1,“, where a describes

the scaling and Cj is a scaling constant. Thus, dimensional consistency and scale invariance
gives that

1(a)]Aps = C; gl=@/2V glal3+131 () [=a/6=1131 - for 4 > a. (6.5)

where a and C; are to be determined.
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(b)

Figure 6-1: Illustration of the three stages of air entrainment: (a) A free-surface deformation exists
with amplitude 1, wavelength A, and minimum radius of curvature R,,. (b) It interacts with an eddy
of size £. (c) a bubble of radius a ~ R;, is formed at depth d.

For FST it is useful to normalize by near-surface turbulence scales L = u? ./ and

Tr = u?, /€. Thus, (6.5) can be nondimensionalized

[I(a)/Ars]* = C; (Frp)l® (24179181 forBo > 1, (6.6)

where the nondimensionalized bubble radius is ¢* = a/Ly and the nondimensionalized
entrainment size distribution is [1(a)/Ars]* = [1(a)/Ars] L7 >Tr. In this nondimensional
form, it is clear that our choice of I1s was such that the value a describes how large-bubble
air entrainment by FST scales with turbulent Froude number.!

6.2.2 Mechanistic model for large-bubble air entrainment by FST

We now propose a mechanistic model of entrainment which obtains the value of @ and
predicts the scaling we observe in DNS (see §6.3.2). As a simplified mechanistic model we
consider three stages for entrainment, illustrated in figure 6-1:

1. The interaction of the free surface with the turbulence beneath creates a deformation
of wavelength A height 7 with a minimum radius of curvature R;,.

2. Interaction of this surface deformation with a turbulent eddy of size £ causes the
deformation to collapse.

3. The collapse entrains a single bubble of radius a at depth d.

Central to our mechanistic model is that during the collapse of the surface the minimum
radius does not change significantly, such that the radius a of the bubble formed scales with
the minimum radius of curvature R;, of the initial surface deformation,

a~Ry. (6.7)

This insight is consistent with observation by Wei et al. (2019) that as air entraining surface
deformations collapse the minimum radius of curvature approaches an asymptotic value
r. which increases with the size of bubble eventually obtained, and is consistent with our
qualitative observations from DNS (figure 6-2).

'While the choice of ITs is not unique, any other valid ITs would simply replace a with some o’ = Ca.
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Turbulence interacting with the free surface causes inter-scale energy transfer

We first seek to determine which turbulent scales are responsible for entraining a bubble
based on the insight that a ~ R, starting with an expression for R;,. As confirmed in
Chapter 4, near-surface turbulence is isotropic for Fr% > 0.1, allowing application of the
Kolmogorov energy cascade. Within the inertial range, the power spectrum of pressure
fluctuations is given by E,, (k) = 2.97 p2&*3k7713 (George et al., 1984). For Bo > 1 such
that surface tension is negligible, the linearized relationship between pressure fluctuations
and surface elevation gives p ~ p,,gn. This linear relationship means the surface elevation
spectrum E,, can be related to the pressure spectrum by E,, ~ (py g)2 E,;,, which gives

Epp(k) ~2.97g2e*34773 (6.8)

For a surface disturbance of wave number k = 27/4, the characteristic amplitude (squared)
is % o E,,(k)ok where 0k ~ k. Taking the square root,

n~1.72g71&*3¢723 (6.9)

For a sinusoidal disturbance, the minimum radius of curvature is R, = K_Zl]_l. Other
disturbance geometries, such as Gaussian (Wei et al., 2019), follow the same scaling
R, « k~2n~!. Thus, for general geometries we have

Ry o ge 2343 (6.10)

Applying a ~ R,, and rearranging (6.10), we determine the turbulence scales « that are
responsible (through interaction with the free surface) for generating bubbles of radius a,

1247314 6.11)

K o g3/ 4o
This is distinct from previous energy-based mechanistic models of air entrainment (Rein,
1998; Yu et al., 2020), which assume bubbles of radius a are entrained by turbulence eddies
of similar scales, i.e., k ~ a~'. While those models are dimensionally consistent, they do
not capture the inter-scale energy transfer we observe with (6.11).

Before moving on, we take a moment to analyze how the inter-scale energy transfer
predicted by (6.11) introduced a significant Froude number effect that was missing from
previous models. On the local scale « of the turbulent eddy, we can define an eddy Froude
number (squared) Fr% = k" 13g2/3 g_l, and (6.11) can be written as

ak o Fri2. (6.12)

This is opposed to ak ~ constant from previous models (Rein, 1998; Yu ez al., 2020). To
interpret the Froude-dependence of this inter-scale energy transfer, consider a fixed g and
fixed eddies of wave number «. Increasing & increases 7, but the steeper free surface leads to
a smaller volume of air trapped when the deformation collapses, and thus a smaller radius
a for the entrained bubble. Smaller bubbles take less energy to overcome gravity, and the
energy of the eddies increases with £. The combination of these effects leads to a very
Froude number sensitive entrainment mechanism.
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Energy balance

To obtain the scaling of the entrainment distribution, we now describe the balance between
the energy available in the free surface to the work necessary to entrain bubbles. Starting
with the energy available in the free surface, for a small range of wave numbers [, k + 0k],
the potential energy associated with the surface deformations (per free surface area Arg) is

PEvaves/ Ars = pwg Eny (k) 0k . (6.13)

Applying the wave spectrum (6.8),
PEyaves/ AFs o pwg_184/3K_7/3 0K . (6.14)

We now consider the energy needed to entrain bubbles. The rate at which bubbles of
radius [a, a + da] are entrained is /(a)da. For Bo > 1 where surface energy is negligible,
the potential energy associated with each bubble of radius a entrained to depth is d (see
figure 6-1c¢) is p,,gvd where the volume of the bubble v = (47/3) a’. Following Yu et al.
(2020) we assume bubbles are entrained to a depth d ~ 2a. Multiplying the rate at which
bubbles are entrained by the energy needed for each bubble, we obtain the necessary work
done, Wy, to entrain bubbles of radius [a, a + da],

Went = 1(a) (87/3) pwga®éa. (6.15)

Figure 6-1b illustrates that for the surface deformation to collapse into a bubble, some
perturbation is necessary. We argue that this perturbation will come from eddies of size
¢ ~ R, (or equivalently £ ~ a) and T¢y is the associated eddy turnover time. From the
Kolmogorov energy cascade,

Tene ~ & Pa*. (6.16)

To balance the energy available in waves to the energy to entrain bubbles, we set
WentTent = PEwaveS and Obtail’l

I(a)/AFs o« g_285/3/<_7/3a_14/3 (6k/ba) . (6.17)

We now apply the inter-scale energy transport which related « to a. (6.11) gives k~//3 «
g /4764714 The derivative of (6.11) gives 6«/8a oc g3/*c1/2¢=7/*_ Finally,

1(a)]Aps o g 3&"Pq~ 1413, (6.18)

This corresponds to @ = 6 in (6.5), and FST entrainment scaling with Frg in (6.6).

Limits on largest entrained bubble, a,,,,

The mechanistic model we develop is based on Bo > 1, leading to the lower limit a > a,
for applicability of (6.18). Here we briefly address the upper limit on applicability of
(6.18). Our interest is some maximum entrained bubble ay,x such that I(a > amax) = 0.
The previous mechanistic argument gives two possible limits. First, in our mechanism the
collapse of the deformation is caused by an eddy of scale £ ~ a. The largest turbulent eddies
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Fr2 We Tsim Urms £ LT Fr% ReT WeT N1 Amax /LT

03 o 256 027 0.027 076 0.03 41 - 820  0.20
06 o 128 029 0.031 0.81 006 47 - 1908  0.30
09 o 128 029 0033 078 0.10 46 - 7920  0.38
12 o 128 026 0025 074 0.11 39 - 9308  0.34
1.8 o 128 028 0.021 099 0.14 54 - 24170 0.27
12 400 127 031 0032 093 0.12 58 36 526 029
12 200 128 034 0039 1.06 0.13 73 25 433 0.23

1.2 100 128 0.30 0.044 0.60 0.18 35 5.2 321 0.62

Table 6-1: List of forced FST simulations used for entrainment measurements. Turbulence properties
urms and € are measured using (6.21). The characteristic length scale Ly = u?ms /€ is used to
calculate the near-surface turbulent Froude number Fr% = (u2,,/L7)Fr?, turbulent Reynolds number
Rer = (uymsL7)Re, and turbulent Weber number Wep = (ufmsLT) We. Ny is the number of (resolved)

entrainment events recorded and an,x is the radius of the largest entrained bubble observed.

are on the order of the characteristic length scale Ly = u> /e, i.e., € < Lr. This implies a

maximum entrained bubble size
Amax /L1 oc constant . (6.19)

Second, our mechanism shows an inter-scale energy transfer, where the energy to form a
bubble comes from a different scale of turbulence. In terms of wave number, the largest scales

of turbulence are kmin ~ 277/ L. By (6.11), this gives amayx o g~/ 3L;/ 3. Rearranging,

amax /L1 o Fry?. (6.20)

Which of these two conditions is more restrictive will depend on Fr%.

6.3 Quantifying entrainment by free-surface turbulence

To study entrainment by FST, we first seek a flow which isolates FST entrainment from any
other entrainment mechanism. This is obtained with the forced FST simulations used in
Chapter 4, where isotropic turbulence is continuously forced deep beneath the surface to
obtain statistically steady turbulence and bubble population at the free surface. In section 6.4
and section 6.5 we will investigate how the entrainment distribution we elucidate here applies
to more general air entraining flows.

6.3.1 Simulation setup

We use the same forced FST simulation setup described §4.3, with many results coming from
the same exact simulations. Table 6-1 provides a summary of the forced FST simulations we
use for this chapter.
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So that our results can be more easily compared to previous work (Yu et al., 2019; Gaylo
et al., 2024), in this chapter the method we use to obtain near-surface turbulence values ;s
and ¢ differs from Chapter 4. We perform averaging only in the water phase (where the color
function ¢ = 1),

] - cdxdr

(Ys = =——— forz>—-6andt € [ty, to + Tsim] - (6.21)

] cdxar

Previous work used 6 /L7 =~ 0.5 to define “near-surface.” Seeking to match this definition,
we choose ¢ = 0.3 based on a priori estimates of Ly. This averaging defines a near-surface
urms = V(U - u)s/3 and a dissipation rate £ = (T : Vu)s. Chapter 4 shows that measuring
these values at (z — 77) /6y = —0.5 is based on a more robust definition of “near-surface”;
however comparing table 6-1 and table 4-1 we see using (6.21) instead does not significantly
affect the calculated values of F: r%.

During the steady state portion of the simulations (r € [7,?y + Tsim]), we use ELA
(Gaylo et al. 2022; see also Chapter 3) to identify and measure entrainment events. As
described in §3.2.2, by identifying the label which corresponds to the bulk air above the
free surface (the ‘sky’) at " and tracking this air up to "' = " + At,, we obtain direct
measurement of entrainment events over the snapshot interval Atz (see figure 3-1c). In
general, Aty Q(ags) = 0.1 avoids spurious events (Chan ef al. 2021a; Gaylo et al. 2022; see
also Chapter 3). Here we use Aty = 0.16.

For each individual entrainment event, ELA gives us the entrained volume v, from
which we calculate the effective radius a = (3v/4r)!/3. To ensure the relevant physics are
resolved by the numerical grid, we only report bubbles a > a5, where aps = 1.5A for
simulations where surface tension is not modeled (Yu et al. 2019; Gaylo et al. 2024, see also
Appendix G), and a5 = 3.5A for simulations where surface tension is modeled (Yu et al.,
2020). The total number of resolved entrainment events N; as well as the largest single
entrained bubble apm,y are shown in table 6-1. For the Fr? = 0.3 run, to obtain a sufficient
number of resolve entrainment events, we increase Ty, from 128 (used in Chapter 4) to 256.

6.3.2 Entrainment size distribution, /(a)

From each simulation, we have a list of all entrainment events and the associated bubble
radius. To obtain the entrainment size distribution, we first bin the entrainment events by
radius. Starting with v/N; bins evenly spaced over log(a), we identify the bin with the
smallest number of events and split it between the two neighboring bins, combining three
bins into two. This is done iteratively until there are at least 15 events per bin. Normalizing
by the width of each bin, Tyim, and Apg = 47% gives I(a)/AFrs.

Figure 6-3 shows the entrainment size distribution for simulations without surface tension
(see table 6-1). We first perform regression to obtain @ and C;. Because (6.6) is based on
the assumption of isotropic near-surface turbulence, we initially consider the results from
only the three strong FST (Fr% > 0.1) simulations. Least-squares regression in log-log
space (after binning, n = 226 data points) gives 95% confidence intervals @ € [5.6,6.1]
and Cy € [2.65,3.87]. The mechanistic model we derive in §6.2.2 gives @ = 6 consistent
with the regression, and if we fix @ = 6, the regression gives the 95% confidence interval
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Figure 6-3: Entrainment size distribution in forced FST (a) as measured; and (b) normalized by Fi rg for
different turbulent Froude number Fr% = &/urmsg. In(b), (-~ —-) shows (6.6) witha = 6and C; = 3.62
(R? = 0.990 excluding Fr7. = 0.03). Recall a* = a g uss, and [1(a)/Aps]* = [1(a)/Ars] ulhs ™.
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2
FI‘T Wer Urms & Lr Qres AH  Odmax

m/s  W/kg m mm mm mm

0.12 36 0.234 0.282 0.046 42 45 13.1
0.13 25 0.220 0.291 0.037 3.0 44 84
0.18 5.2 0.159 0.276 0.015 21 45 90

Table 6-2: Dimensional values for forced FST simulations including surface tension. ds is the
smallest bubble resolved by the grid. The Hinze scale ay is calculated using (5.1) with Wey = 4.7
(Martinez-Bazan et al., 1999a).

C; =3.62 £ 0.10. Figure 6-3b shows the collapse of the entrainment size distribution when
normalized by F rg for all but the lowest F; r% = 0.03, where the turbulence deviates furthest
from isotropy. Even including Fr% = 0.06 < 0.1 where turbulence is weakly anisotropic, our
model shows a very strong agreement (R? = 0.990) with the numerical results. The strong
observed correlation with DNS confirms that (6.5) describes the scaling of FST entrainment
for large bubbles (a > a.) where surface tension is negligible. These results also show that
a = 6, so, consistent with (6.18) derived from our mechanistic model, we have

1(a)]Aps =Crg3 "3 2a)™'*?  fora > a., (6.22)

where C; = 3.62 for this limiting case of negligible surface tension.

We see that (6.22) applies up to bubbles as large as amax /Ly = 0.3, above which there
is no entrainment (see Table 6-1). This constant ap.x /L7 is what we expect from (6.19),
suggesting that interaction with a similar sized eddy is the cause of the limit on the largest
entrained bubble size in the Fr% regime of these simulations. It is not a surprise that (6.19)
is the limit rather than (6.20), as 1 < Fr}2 for all simulations.

6.3.3 Effect of weak surface tension

So far, we have considered the limiting case of negligible surface tension. We now consider
the effects of finite surface tension on FST entrainment. The turbulent Weber number,

u

— (6.23)

Wer = Colon

characterizes the strength of near-surface turbulence relative to surface tension. Holding
Fr% ~ 0.11 constant (strong FST), we perform DNS of 3 different Wer > 1. While the
computational limits of DNS prevent us from directly matching viscosity, for each Wer
we can match o = 72 mN/m, p,, = 1024 kg/m>, and g = 9.81 m/s? for air-water on Earth,
which we can use to dimensionalize our results (see Table 6-2). As it is independent of
turbulence levels, the capillary scale is @, = 1.3 mm for all simulations.

As discussed in Chapter 5, it is well known that surface tension prevents fragmentation of
bubbles smaller than the Hinze scale (Hinze, 1955), defined by (5.1). For bubble populations
dominated by fragmentation, this causes a change in the power-law slope of N(a) at ay
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Figure 6-5: Value of C; obtained through regression as a function of Wer, with error bars indicating
the 95% confidence intervals. ( ) shows the empirical fit, (6.24).

(Deane & Stokes, 2002). For these simulations ay ~ 4.4mm. Figure 6-4 shows the
obtained entrainment size distributions, and we highlight that for the large bubbles we study
(a > a. = 1.3mm), there is no departure from the /(a) o a~14/3 power law given by (6.22),
including around ag. It is not surprising that the Hinze scale is not relevant to large bubble
entrainment; the Hinze scale comes from the relationship between surface tension and
turbulence, where large bubble entrainment is driven by the relationship between gravity
and turbulence.

Except for the case with the strongest surface tension (b.iii) where surface tension
suppresses L7, we also see that amax ~ 0.3 L7 consistent with the negligible surface tension
results in §6.3.2. Rather than changes in the shape of I(a), we find that the effect of
surface tension on large-bubble entrainment is to decrease the magnitude of /(a) through C;.
Consistent with C;(Wey — oo0) = 3.62 from §6.3.2, we use the C; from these simulations to
obtain the empirical fit

3.62- A
C1(Wer) = +A, (6.24)

1 + (Wer.cr/ Wer)*

where Wer . = 34 and A = 0.69, shown in figure 6-5. Our results show that any effects of
surface tension on the entrainment of large bubbles become negligible for Wer > Wer .,
which is reflected in the denominator of (6.24).
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In theory the mechanistic model in §6.2.2 could be extended to include surface tension
effects. While this could provide a mechanistic explanation for (6.24), it is not trivial. The
first challenge that arises is that the linearized relationship between pressure fluctuations and
surface elevation is now p ~ (p,g + c«?) 1. This makes the relationship between 1 and
k in (6.9) non-monotonic. The result is that the inter-scale energy transfer becomes more
complicated, as one scale of turbulence can lead to the creation of bubbles at two different
scales.

6.4 Comparison to air entraining free-surface shear flow

In section 6.3 we considered entrainment in a flow where the only entrainment mechanism
present is FST. For general air entraining flows, FST is often present (Brocchini & Peregrine,
2001a) so we expect the FST entrainment mechanism to play a role in the total entrainment;
however, other entrainment mechanisms may also be relevant. The question then is how
significant FST entrainment is to the total entrainment. If FST entrainment is dominant, we
expect I(a) to follow the scaling (6.22) we develop. In this section, as an illustration of a
more general air entraining flow, we consider a canonical free-surface shear flow, which also
serves as a model for ship wakes (Shen et al., 1999; Yu et al., 2019).
The canonical free-surface shear flow we consider is that generated by the initial shear
profile,
u(z,t =0)/U =1-0.9988 sech(0.88137z/L), (6.25)

characterized by the shear velocity U and shear length L. At sufficient Reynolds number
Re = ULp,,/u,, a small, random initial perturbation causes the shear profile to generate
turbulence (Shen et al., 1999). Yu et al. (2019, 2020) show that for Froude number squared,
Fr? = U?/Lg, greater than a critical Fr2, ~ 5 the turbulence leads to bubble entrainment.
There has also been extensive DNS characterizing this FST at low Fr? (Shen et al., 1999,
2000), where it has been shown that the shear instability leads to surface waves propagating
in the direction of U (Dimas & Triantafyllou, 1994; Longuet-Higgins, 1998). In Appendix F
we extend the linear stability analysis by Longuet-Higgins (1998) to include finite depth
effects. For our simulations this linear analysis shows that wavenumbers kL € [0.67, 1.23]
are unstable, and analysis of the wave spectrum confirms these long waves are present even
at the large Fr> we consider. We highlight these long waves as they represent an alternative
mechanism for air entrainment, and the presence of these non-isotropic waves also must
have some effect on the near-surface turbulence.

6.4.1 Direct numerical simulation of free-surface shear flow

For DNS of free-surface shear flow we follow the same setup as Yu ef al. (2019, 2020).
We set U and L to unity, which is equivalent to using U and L to nondimensionalize
all values in the simulation (i.e., to go from (2.1b) to (2.5)). We set the domain size to
(27/0.6)* x 6, where initially z € [—4,0] is water and z € [0, 2] is air. The horizontal
domain size 27/0.6 ~ 10.472 ensures that the longest unstable wave number from the
shear instability is captured (Shen et al., 1999). This gives an initial free surface area
Aps = 10.4722. We set Re = 1000 and We = oo (surface tension not modeled) and study a
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Fr*  Ngm umms €X 10 Ly Fri  Rer N;  amax/L7
5 10 0.065 5.1 054 0.04 36 358 0.28

8 8 0.066 5.7 0.51 0.07 34 1344 0.40
10 6 0.067 5.8 0.52 0.09 35 1848 0.41
15 6 0.069 5.5 0.61 0.12 42 4214 0.46
20 6 0.074 5.4 0.74 0.15 55 5877 0.33

Table 6-3: List of free-surface shear flow simulations used for entrainment measurements. All
simulations are performed with We = oo (surface tension not modeled). Ngy, is the number of
ensemble simulations. Turbulence properties u;ms and & are measured using (6.21) during ¢ € [40, 70].
The characteristic length scale Ly = u? /¢ is used to calculate the near-surface turbulent Froude
number Fr2. = (u2,,/Lr)Fr?, turbulent Reynolds number Rer = (usmsL7)Re. N is the number of
(resolved) entrainment events recorded and ap,y is the radius of the largest entrained bubble observed.

(a) %107 ' ' ' ' ' ' (b) %1073 '

0 26 40 66 86 160 léO 0 Zb 40 66 8b 160 liO
t t
Figure 6-6: Ensemble average (a) turbulent dissipation rate and (b) turbulent kinetic energy in the
near-surface region for: ——, FrZT =0.04; —, Fr2T =0.07;, —, Fr% =0.09; —, FrzT =0.12;
o Fr% =0.15. (- - - -) indicate ¢ € [40, 70] over which we perform a temporal average to obtain
the values in table 6-3.

range of Fr? > Fr2, (see table 6-3). Yu et al. (2019) perform a grid convergence study to
show a grid 3842 x 256 is sufficient for DNS of this flow, giving a grid size A ~ 0.027. We
include an additional grid convergence study in Appendix G to confirm that this grid size
sufficiently resolves entrainment (and degassing). As in section 6.3, only resolved bubbles
(radius larger than a.s = 1.5A) are reported. To obtain sufficient entrainment statistics, for
each Fr? studied (see table 6-3), we repeat the simulation with different realizations of the
random initial perturbation to obtain ensemble statistics. The rendering in figure 1-2 comes
from a simulation of Fr? = 15 at time ¢ = 60, with the shear velocity going from left to right.

We highlight that, unlike the forced FST in section 6.3, this is an unsteady flow. The
initial shear profile generates turbulence which then reaches the surface; however, because
there is no further injection of energy, the turbulence slowly decays when dissipation becomes
stronger than the shear turbulence production. Figure 6-6 shows the evolution of ensemble-
averaged turbulent dissipation rate (€)s and turbulent kinetic energy (k)s = %(u - u)g, using
the water phase average (6.21), where ¢ = 0.2 captures the near-surface region for this flow
(Yu et al., 2019). We observe a quasi-steady period ¢ € [40, 70] over which we perform a
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temporal average to obtain the turbulence values € and u,s = 4/2(k)s/3 used to characterize
near-surface turbulence (see values reported in table 6-3). For each Fr? studied we perform at
least 6 simulations to obtain at least 10° resolved entrainment events during this quasi-steady
period for all but the smallest Fr? (close to Fr2,).

For ELA, we use a snapshot interval Aty = 0.4. This corresponds to Aty =~ 0. 1Q(ares)_1,
which avoids spurious events (Chan et al. 2021a; Gaylo et al. 2022; see also Chapter 3). We
also use Aty = 0.8 and 1.6 and find the shapes of the entrainment size distribution /(a) (and
the degassing size distribution D (a) addressed in Chapter 7) are independent to this range
of At,.

6.4.2 Results

Using the same method described in §6.3.2, we bin the entrainment events identified by
ELA and calculate the entrainment size distribution (per unit free-surface area) /(a)/Ars.
Figure 6-7 shows the results, before and after scaling by (6.22). We see that our model does a
very good job of predicting the measured 7(a) (in log-log space, R> = 0.891), without even
the need to adjust C; = 3.62. Similar to §6.3.2, we find anm,x /L7 = 0.3-0.4 (see table 6-3).

While the fit here (R?> = 0.891) may not be quite as perfect as for the forced FST
simulations (R? = 0.990), this is still a very strong agreement with (6.22). For comparison,
Gaylo et al. (2024, Figure 4b) tried to scale these same results with Fr% predicted by Yu et al.
(2020) rather than Fr(T’ predicted by (6.22), and the collapse here in figure 6-7b is clearly
much better. As noted, this free-surface shear flow is much more complex than the forced
FST we first considered: turbulence is only quasi-steady, and the shear instability generates
long waves. While both could have some effect on the entrainment size distribution, the still
strong agreement with (6.22) suggests that the FST entrainment mechanism is nonetheless
the dominant entrainment mechanism for this free-surface shear flow.

6.5 Comparison to open-channel flow experiments

We now compare our FST entrainment model (6.22) to the experimental measurements by
Wei et al. (2019) in open-channel flow. The first challenge is that Wei et al. (2019) only
report the size of bubble produced by 108 entrainment events. Due to the small number of
events, we modify the binning method described in §6.3.2 to only require at least 4 events per
bin (rather than 15). While this introduced more statistical noise, we find the shape of 1(a)
is still relatively clear. The second challenge is that, because some number of entrainment
events would have been obscured from view and A g was not reported, the magnitude of
I(a)/AFs is unclear; while we can still report the shape of o« /(a) across radii, there is a
chance of bias in what size of entrainment events were obscured.

Figure 6-8 shows the entrainment size distribution we calculate from the entrained bubble
sizes measured by Wei et al. (2019). Many of the entrainment events they measure produce
bubbles smaller than the capillary scale (a < a.). Focusing on bubbles larger than the
capillary scale, it appears that the results are converging to I(a) oc a~'#/3 in the limit a > a.,
consistent with our FST entrainment model (6.22). This implies that in this flow too, FST
entrainment is the dominant entrainment mechanism.
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Figure 6-7: Entrainment size distribution in free-surface shear flow (a) as measured; and (b) normal-
ized by Fr? for different turbulent Froude number FrzT = &/umsg- In (b), (— ——) shows our model
(6.22) with Cy = 3.62 (R?> = 0.891). Recall a* = aeu_3 and [I(a)/Ars]* = [I(a)/Ars] ull 7%,
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Small bubbles Large bubbles

a < Q. a > a,

a, mm

Figure 6-8: Entrainment size distribution calculated from the results of Wei et al. (2019) for
open-channel flow experiments. The scaling of the y-axis is arbitrary. (— ——) shows I(a) oc a~'4/3
from (6.22).

6.6 Conclusion

In air entraining flows a variety of different mechanisms could be involved in creating the
entrainment size distribution /(a). However, a common feature of many air entraining
flows is the presence of strong turbulence beneath the free surface. In this chapter we have
specifically addressed entrainment by this strong FST and characterized the size distribution
of bubbles larger than the capillary scale a, = 1.3 mm.

Applicable to strong FST (Fr% > (.1) where the near-surface turbulence is nearly
isotropic (see Chapter 4), dimensional analysis in §6.2.1 shows that large-bubble FST
entrainment is governed by a single scaling parameter « and a single scaling constant C;.
Using DNS of forced turbulence under a free surface, which isolates the FST entrainment
mechanism, we obtain that @ = 6, and C; ~ 3.62. This gives

1(a)/Arps =Cr g3 "3 2a)3  fora > a., (6.22)

to describe how large-bubble entrainment scales with gravity g, the strength of turbulence
g, and bubble radius a. This distribution is in near perfect agreement with the measured
distributions (R? = 0.990), even when including Fr% < 0.1. Introducing weak surface
tension effects, we obtain (6.24) to explain how surface tension decreases C;, but we
highlight that /(a) o a~'*/3 from (6.22) is still true for all @ > a.. In §6.2.2 we describe
the mechanism for FST entrainment, which is consistent with observations of individual
entrainment events and obtains the same g~> (i.e., Frg) and a~'%/3 scaling of I(a). Missing
from previous models (Yu et al., 2020), the very strong Froude number dependence is
explained by the Froude-dependent movement of energy from larger scales of turbulence to
smaller scales of bubble given by (6.12).

We start with studying a flow chosen to isolate entrainment by FST, but find our results
apply to more general, complex flows where other entrainment mechanisms could be present.
We perform DNS of a free-surface shear flow which models aspects of the flow behind a
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ship. Without changing any parameters in (6.22), we obtain a very strong agreement with the
measured /(a) (R? = 0.891). We also consider open-channel flow experiments by Wei et al.
(2019). While many more observations will be necessary to obtain definitive entrainment
statistics, our predictions are consistent with their results for large-bubble entrainment.

In addition to validation of our model, the agreement between /(a) observed in free-
surface shear flow and open-channel flow and our model suggests FST entrainment is the
dominant entrainment mechanism in these flows. We note that there are many air entraining
flows and some may involve different (dominant) entrainment mechanisms, notably cavity
entrapment in breaking waves (Deike et al., 2016; Chan et al., 2021c; Gao et al., 2021) or
plunging jets (Kiger & Duncan, 2012; Bertola et al., 2018). While we do not expect one
model to be able explain the features of all conceivable air entraining flows, if entrainment
by FST mechanism is a significant contributor to the total entrainment one expects to see
its features reflected in /(a). Noting the common presence of near-surface turbulence
(Brocchini & Peregrine, 2001a), this suggests that our model for FST entrainment could be
applicable broad classes of air entraining free-surface flows. In particular, the confirmed
applicability to free-surface shear flow suggests our model is relevant for modeling flows
like ship wakes.
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Chapter 7

Bubble Degassing in Free-Surface
Turbulence

In this chapter we focus on bubble degassing, the D(a) term in the population balance
equation (1.2). Using ELA (Gaylo et al. 2022; see also Chapter 3), we are able to, for the
first time, directly measure the degassing size distribution D (a) and elucidate the scaling.
After quantifying degassing, we examine the bubble size distribution N(a) predicted by
(1.2). By comparing the strength of degassing to fragmentation, we identify a class of
free-surface flows that are degassing, rather than fragmentation, dominated. We show
degassing-dominance leads to an equilibrium bubble population that is clearly distinct from
the N(a) o a~'%/3 equilibrium solution for fragmentation dominated bubble populations,
such as in plunging breaking waves.

Many of the key results of this chapter are summarized in “Effect of degassing on bubble
populations in air entraining free-surface turbulent flows” by Gaylo, Hendrickson & Yue
(2024). A major difference is that here we use the new model for /(a) (Gaylo & Yue
2025, see also Chapter 6) in our model of degassing-dominated bubble populations (N (a) =
I(a)/A(a)). This leads to significantly better agreement between the bubble population
predicted by our model and observed in DNS.

7.1 Introduction

A fundamental property of the bubble size distribution is the power law slope 5 describing
how the distribution depends on bubble size, N(a) « a®. As discussed in section 1.3,
B = —10/3 is the equilibrium solution for air entraining flows which are dominated by
fragmentation (Garrett et al., 2000; Gaylo et al., 2021). Studying plunging breaking waves,
Deane & Stokes (2002) observe 8 = —10/3 for super-Hinze bubbles (a > ay, where ay is
given by (5.1)) during the air entraining period (referred to by them as the acoustically active
period) and conclude that fragmentation and entrainment are the dominant mechanisms
during this period. Many have since reported 8(a > ay) ~ —10/3 during the air entraining
period of plunging breaking waves (Deike, 2022).

After the air entraining period, when the total volume of air begins to decrease, Deane
& Stokes (2002) observe steepening of the bubble size distribution (8 < —10/3), which
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they attribute to degassing and dissolution becoming relevant, in the absence of entrainment
and fragmentation. They refer to this period as the quiescent period. Previous work on
degassing in the context of breaking waves focuses on this quiescent period, seeking to
explain how degassing evolves a bubble population after entrainment and fragmentation
have already established it (e.g., Callaghan et al., 2013; Deike et al., 2016). What has not
been addressed is the effect of degassing during the air entraining period, when degassing
acts to balance entrainment. The wide agreement on B(a > ay) ~ —10/3 suggests that this
effect is negligible compared to fragmentation for plunging breaking waves; however, in this
work we will show that for air entraining FST, degassing is in fact the dominant balance to
entrainment during the air entraining period.

Here we evaluate the effect of degassing in FST. In contrast to breaking waves where
the energy to create bubbles comes from a (downward) mean flow, in this flow the energy
comes directly from the underlying turbulence. In the absence of a mean downward flow, we
theorize that degassing will be stronger relative to other entrainment-balancing mechanisms,
such as fragmentation, and our results confirm degassing is dominant. In section 7.2 we
start by reviewing the population balance equation (PBE) and deriving quantities to measure
degassing dominance. We then derive the equilibrium solution to the PBE for degassing
dominated bubble populations in air entraining flow. Using a simple model of degassing and
the entrainment size distribution from Chapter 6, we obtain the power-law slope g for this
equilibrium solution.

In section 7.3 we use the same DNS of canonical free-surface shear flow (Shen et al.,
1999; Yu et al., 2019) as in Chapter 6, and ELA (Gaylo et al. 2022; see also Chapter 3)
directly obtains degassing statistics. Studying large Weber numbers, where fragmentation is
strongest, we find that degassing is dominant over fragmentation, independent of Fi r%. ELA
measurements of the degassing rate confirm the accuracy of our simple model of degassing.
Finally, measurements of N (a) (independent of ELA) agree with our predicted equilibrium
solution for degassing dominated bubble populations. In section 7.4 we discuss how this
result elucidates how degassing-dominated bubble populations (expected in air entraining
FST) scale with Froude number.

7.2 Modeling degassing-dominated bubble populations

Using the PBE, we seek a model for 8 in degassing-dominated air entraining flows, as
well as formal definitions of “air entraining” and “degassing-dominated.” We start with a
brief review of the PBE introduced in Chapter 1. Recall that, because fragmentation and
degassing of an individual bubble is independent of other bubbles, the distributions are
linearly dependent on N (a) and we can write

S}(a) =Q(a)N(a), (1.5)

and

D(a) = A(a)N(a) . (1.6)
This defines the fragmentation rate Q2(a), the focus of Chapter 5, and the degassing rate
A(a), a focus of this chapter. With these two relationships, the PBE (1.3) (which neglects
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dissolution and coalescence) can be split into positive and negative terms:
ON/dt(a) = [I(a) + S}(a)] — [A(a) + Q(a)|N(a) . (1.7)

Weighting the PBE by a® and integrating over all bubble sizes, we obtain the evolution of
the total entrained volume

dv/dt = Q; - Op . (1.8)

Because it only moves volume between bubble sizes, fragmentation does not contribute
dv/de.

To classify flows as air entraining, we consider the ratio between degassing flux and
entrainment flux,

D =0p/0r. (7.1)

We define an air entraining flow to be one where D € [0, 1], meaning the amount of
entrained air is increasing (dV /dt > 0) or at equilibrium (dV' /d¢ = 0). This excludes flows
with negligible entrainment (9 > 1), such as the quiescent period of breaking waves.
For breaking waves during the air entraining period, Deane & Stokes (2002) show that
entrainment and fragmentation are the primary mechanisms, implying that degassing is
negligible (D < 1). Our interest is air entraining flows where degassing is important
D<)

7.2.1 Defining degassing-dominated bubble populations

We define a degassing-dominated flow to be one where degassing, rather than fragmentation,
dominates the evolution of the bubble population. As a simple measure, we could look at the
negative terms in (1.7) and see that if A(a) > Q(a) a bubble is more likely to degases than
fragment. Formally we need to also consider the positive term S}(a), but it turns out that
A(a)/Q(a) is still an appropriate measure of degassing versus fragmentation dominance.

To understand the effect of S}(a), we take the same approach as in §1.3.1 and assume
identical fragmentation, where all bubbles fragment into exactly m identically sized daughter
bubbles.! This gives

S;(a) ~m*BPQ(m'Pa)Nm'a). (7.2)

While this may not be the most realistic model fragmentation, in Chapter 5 we showed that
unrealistic fragmentation models (Cy = 1 here) can capture the behavior of fragmentation
cascades if m is chosen such that a realistic value of C; is obtained in (5.30). Using C; =~ 9
and Cgo = 1.4 (Gaylo et al. 2023, see also Chapter 5), (5.30) gives m =~ 1.45 is needed for
(7.2) to realistically capture the fragmentation cascade.

Assuming a > ay such that we can use the power-law relationship (1.11), we have
Q(m'Ba) = m™*°Q(a). If we assume a power-law for the bubble size distribution,
N(a) « aP, we obtain

St(a) ~ S7(a) m'PP (7.3)

'In (5.2) this means setting 8(a;a’) = 6(a’ — m~'3a), where § is the Dirac delta function.
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This allows us to rewrite (1.7) as
ON/dt(a) ~ I(a) - [A(a) + Q(a)(1 = m"*FB)|N(a), (7.4)
Which makes it clear that the ratio

Effect of Degassing A(a)

: ) . (7.5)

Effect of Fragmentation — Q(a) |1 - m10/9+ﬂ/3|

Using m ~ 1.45 as an example, we have |1 — m'%%*#/3| < | for any B < 2.26. As B is
typically negative (more smaller bubbles than larger bubbles), we can be confident that
A(a)/Q2(a) > 1 means that the effects of degassing are larger than fragmentation. If 8 is
known, a tighter bound could be determined. In summary, if A(a)/Q(a) > 1 we can be
sure that the effect of fragmentation on N(a) is small compared to the effect degassing,
defining a degassing dominated population.

7.2.2 Degassing-dominated population balance equation

For degassing-dominated bubble populations (A(a)/2(a) > 1) we can remove the negligible
fragmentation term from the PBE, giving

ON/0t(a) = I(a) — A(a)N(a). (7.6)

This is significantly more simple than (1.7) because, by removing the integral coming
from S*(a), we have removed any dependence of N(a) on N(a’) for any a’ # a. With no
dependence between bubble sizes, we could write (7.6) as a set of independent first-order
linear ordinary differential equations,

[dN;/dt =I; = A;N  V  bubble radii a;] . (7.7)

which are easy to solve for a given initial condition, entrainment rate /; (which could depend
on time) and degassing rate A; (which could also depend on time).

Equilibrium and non-equilibrium regimes
A useful way to interpret (7.6) comes from rearranging it:
I(a) = A(a)N(a) + ON/0t(a) . (7.8)

We see that bubble entrainment is balanced by two terms: degassing, A(a)N(a), and/or an
increase in the bubble size distribution, 9N /9dt(a). With a little more rearranging, the ratio
of the first to the second term defines

AN
@) = T AN @)

(7.9)
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For y(a) < 1, entrainment is balanced by a corresponding increase in the bubble size
distribution, dN/dt(a) ~ I(a). Suppose we start from N(a) = 0att =0. y(a) < 1
suggests a non-equilibrium regime of linear growth N(a) = tI(a). Plugging this back into
(7.9), we get

A(a)t
1 - A(a)t

We see that y(a) < 1 can only be true for timescales t < 1/A(a). Beyond this, we
enter a regime y(a) > 1 where entrainment is primally balanced by degassing and the
bubble population does not change significantly (0N /dt(a) ~ 0). For a given radius, the
characteristic time to reach this equilibrium regime is 1/A(a).

While we stress that the evolution of each individual radius is independent for a degassing-
dominated bubble population, it can still be useful to define measures of equilibrium/non-
equilibrium which describe the entire bubble population. If we weigh the numerator
and denominator of (7.9) by bubble volume a* and integrate separately, we obtain I" =
Op/(Qr — QOp). This can be related to D from (7.1):

v(a) ~ fory(a) < 1. (7.10)

D
I'=s ——. 7.11
) (7.11)

This I" gives a measure of y(a) for all radii of a bubble population. We expect the
non-equilibrium regime for I” < 1 and the equilibrium regime for I" > 1.
Power-law slope of the equilibrium solution, 8

Here, our primary interest is the equilibrium solution to (7.6). As demonstrated, we expect
this solution if /(a) is constant or changes over timescales much longer than 1/A(a). Setting
0N /0t(a) = 0, the balance between entrainment and degassing in (7.6) gives

N(a) = I(a)]/A(a) . (7.12)

Chapter 6 shows that I(a) o a~'*/3 for a > a., where a. is the capillary scale.” If we
assume that degassing follows some power law A(a) o a®, the power law slope of N(a) in
degassing-dominated bubble populations is

B=-14/3-a fora>a,. (7.13)

Next, we determine the value of .

7.2.3 Power-law scaling of degassing in free-surface turbulence

To predict a, we derive a characteristic bubble depth L4 and bubble rise velocity U, such
that the degassing rate is A(a) o« U, /L. We start with the characteristic depth L4, which
we described the depth of a recently entrained bubble. For the energy argument in Chapter 6,
we consider an initial depth d ~ 2a (see figure 6-1). This initial depth d was used to relate

2Gaylo et al. (2024) use I(a) o a~'%/3 predicted by Yu et al. (2020), which we now know is wrong (Gaylo
& Yue 2025; see also Chapter 6).
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the potential energy of the surface deformation to the initial potential energy of the entrained
bubble. What we did not consider in §6.2.2 is that turbulence could then advect the bubble
further downward.

As confirmed in Chapter 4, near-surface turbulence is isotropic for Fr% > 0.1, allowing
application of the Kolmogorov energy cascade. In the inertial sub range, an eddy of size
¢ has a velocity uy ~ €'/3¢'/3 and is coherent over 7, ~ £~1/3¢2/3. A bubble of radius a
has an added mass m ~ p,,a> and (at large Reynolds numbers) feels a force from the eddy
F ~ pwazu?. Assuming this force is greater than buoyancy (F > p,,g(47/3)a’) the bubble
accelerates downward with w ~ u% /a. This moves the bubble to a depth z ~ #,*Ww = €?/a.
The eddies with the most energy are £ ~ L7 = umms €', and we assume these are primarily
responsible for pushing bubbles downwards, giving a model

Ly =Cp umse2a™", (7.14)

where Cy, is an unknown constant of proportionality.

For characteristic velocity Uy, either buoyant rise or turbulent advection can be relevant.
For buoyant rise, we consider W7, the terminal rise velocity of a bubble in quiescent flow.
This is characterized by a Reynolds number,

2a)W,
Rey = 2T (7.15)

Vw

Park et al. (2017) summarize the three regimes of bubble terminal rise velocity:

11—2 gv,! (2a)? Rey < 1
Wr(a) = 40.144 g3/6 v (2a)3? 1 < Rey < 100 (7.16)
0.711g'2 (2a)'/? Rey > 150, and Bo > 40

(Davies & Taylor, 1950; Mendelson, 1967; Wallis, 1974; Clift et al., 2013). We consider
bubbles in the inertial regime 1 < Rey < 100, like those in our DNS, and bubbles in the
spherical-cap regime Rey, > 150, which we expect for larger physical-scale free-surface flows
where the Reynolds number is much larger than captured by our DNS (e.g., Hendrickson
et al., 2019). While our focus here is bubbles a > a. where surface tension effects are
negligible, Park et al. (2017) provide the full equation for the spherical-cap regime which
includes the effect of surface tension.

In addition to buoyant rise, the movement of bubbles can be affected by turbulent advection,
which we model as Uy = Cy urms, Where Cy is an unknown constant of proportionality. For
small bubbles, we expect their movement to be dominated by turbulent advection. For large
bubbles, we expect their movement to be dominated by buoyant rise. Setting Wr = Cytyms
defines the transition between these two regimes, and we solve (7.16) for a to define the
critical radius

~ {182 (CU urms)2/3 V?v/g g—5/9 DNS-scale ReW (7 17)

a =
4 700.99 (Cy ttgms)? & Physical Rey
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Thus, we define a simple model for the two regimes of the characteristic rise velocity,

C ms
A:{ Ut @ = A (7.18)

Wr(a) a>ays

Although more advanced models consider the interaction between buoyancy and turbulence
(relevant near a = a,) (e.g., Salibindla et al., 2020; Ruth et al., 2021), we find this simple
two-regime model is sufficient to explain the power law scaling of degassing.

Using our models for L4 and U, with A(a) = U, /Ly, we obtain

(alap) a<ay
Aa) = Ay {(ajap)’? a > a,, DNS-scale Rey , (7.19a)
(aap)’? a > ay, Physical Rey

where

Cu 5, 1.82 C1 7' Cu™P s 133 &2 vi/? ¢75/°  DNS-scale Reyy
A(): — Ums € dAp = -1 3 3 2 -1 . .
CrL 099C.™ ' Cy® ums > &*g Physical Rey
(7.19b)
This gives the power-law slope @ for degassing in the turbulence-driven regime (a < a,)
and buoyancy-driven regime (a > a,),

1 a<agp
a=15/2 a > a,, DNS-scale Rey (7.20)
3/2 a > ay,, Physical Rey

Using (7.13) for degassing dominated populations, we obtain

—-17/3 (= —5.66) a<ap
B=1-43/6 (= -7.16) a > ap, DNS-scale Reyy . (7.21)
—-37/6 (= —6.16) a > a,, Physical Rey

In all these regimes, we predict that degassing-dominated bubble populations have a
significantly more negative (more smaller bubbles, fewer larger bubbles) than 8 = -10/3 (=
—3.3) for fragmentation-dominated bubble populations.

7.3 Quantifying degassing in air entraining free-surface
shear flow

To quantify the effects of degassing on the bubble population, we consider the same canonical
free-surface shear flow we used to quantify the effects of entrainment in Chapter 6 (see
§6.4 for details). Figure 7-1 lists the simulations performed. Note that these are the same
simulations as in Chapter 6 (see table 6-3). In these simulations, we use ELA (Gaylo et al.
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Fr*  Ngm Umms €X10* Ly Fr% Rep Np D

5 10 0.065 5.1 0.54 0.04 36 231 0.60 +0.09
8 8 0.066 5.7 0.51 0.07 34 976 0.72+£0.05
10 6 0.067 5.8 0.52 0.09 35 1344 0.71 £0.05
15 6 0.069 5.5 0.61 0.12 42 3150 0.75 +£0.06
20 6 0.074 54 0.74 0.15 55 4167 0.68 £0.05

Table 7-1: List of free-surface shear flow simulations used for degassing measurements. All
simulations are performed at We = oo (surface tension not modeled). Ny, is the number of ensemble
simulations. Turbulence properties u;ms and & are measured using (6.21) during ¢ € [40, 70]. The
characteristic length scale L = u} /& is used to calculate the near-surface turbulent Froude number
Fr2. = (uZ,,/L7)Fr?, turbulent Reynolds number Rez = (urmsL7)Re. Np is the number of (resolved)
degassing events recorded. The 95% confidence interval is given for the average value of O from
(7.1).

1.5
~ 1r N
i<
~
IS
0.5 _
0
0
Figure 7-1: Ratio of degassing flux to entrainment flux for: ——, Fr2T =0.04; —, Fr% =0.07;
_ Fr% =0.09; —, Fr2T =0.12; —, Fr% =0.15. (- - - -) indicate ¢t € [40, 70] over which we

perform a temporal average to obtain the values in table 7-1. For clarity, we apply a top-hat filter
(width 8 in time) denoted ~.

2022; see also Chapter 3) to identify and measure degassing events over the snapshot interval
Aty (see figure 3-1c). As in §6.4, we use a snapshot interval Af; = 0.16 and only report
bubbles a > aes, Where apes = 1.5A.

7.3.1 Volume flux ratio, D

We start by considering O from (7.1), the ration of degassing volume flux Qp to entrainment
volume flux Q;. Figure 7-1 shows instantaneous O over the evolution of the free-surface
shear flow. First, we note that the evolution of D is consistent across the range of Fr%.
Recall in section 7.2.2 we showed the characteristic timescale for the evolution of y(a) is
o« 1/A(a). Fora < ay, (7.19) gives A(a) o« ums >&?a, independent of g. I" (related to D
through (7.11)) is a volume weighted average of y(a) across bubble radius. This means that
if the majority of air volume is in bubbles a < a,, we expect the evolution of D to be Fr%
independent.
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Consistent with the analysis in §7.2.2, we see I' < 1 (D < 0.5) for a short time near the
start of entertainment (¢ < 30), before I' > 1 is obtained. We focus on the period ¢ € [40, 70]
when the turbulence is quasi-steady (see figure 6-3). Unlike O < 1 seen for breaking waves
(Deane & Stokes, 2002), our free-surface shear flow shows D =~ 0.7 (or I' = 2.3) during
this air entraining period, which, as expected, is independent of Fr%. This D ~ O(1) shows
that degassing is an important mechanism balancing entrainment. Next, we will prove this
flow is degassing dominated, in which case I" > 1 shows that although the turbulence and
entrainment size distribution /(a) are changing in time, those timescales are large enough
relative to 1/A(a) such that the bubble population is in the equilibrium regime.

7.3.2 Degassing rate, A(a)

We use ELA to obtain the degassing events over ¢ € [40, 70]. Using the same binning method
described in §6.3.2, we calculate the degassing size distribution D(a), where there are at
least 15 events per bin.> For each bin, we then divide by the average N(a) (calculated from
75 evenly spaced samples over ¢ € [40, 70] from each simulation) to obtain the degassing
rate A(a), shown in figure 7-2. Least-squares regression in log-log space (after binning,
n = 160 data points) gives the best fit Cy = 3.0 and C; = 0.219.* Looking at figure 7-2b
we see that our model (7.19), with these two fitting parameters, shows a good agreement
(R? = 0.761) with the numerical results.
To directly quantify the power-law slope A(a) « a®, we also perform least-square
regression to
log [A(a)/Ao] = &log[a/aa] +C, (7.22)

for a/ap < 0.8 and a/a, > 1.25 separately. As discussed in section 7.2.3, our model
is designed to capture the power law far from a/a, =~ 1, where Cy uyms = Wr(a). For
alap, < 0.8 we obtain a 95% confidence intervals @ € [0.82,1.08], consistent with
a(a < ay) = 1 predicted by (7.20). For a/a, > 1.25 we only have 16 data points, so the
range & € [—2.07,2.90] is quite wide, but not inconsistent with a(a > a,) = 2.5 predicted
by (7.20). Qualitatively, figure 7-2b is compatible with a(a > a,) = 2.5.

7.3.3 Degassing dominance

We now examine the strength of degassing relative to fragmentation. Figure 7-3 shows that
A(a)/Q(a) > 1 for most bubble radii. Using (7.5), we can calculate the ratio of degassing
versus fragmentation including the cancellation between S} and S;. Based on m = 1.45
chosen to match C; and 8 = —17/3 from (7.21), (7.5) becomes

Effect of Degassing A(a) 1 (7.23)
Effect of Fragmentation  Q(a) \0.251/ '

In figure 7-3 we see A(a)/2(a) > 0.251 for all bubble radii. These results show that
degassing is not only important in free-surface shear flow, but dominant over fragmentation.

3Gaylo et al. (2024) use a different binning method, leading to only slightly different plots.
495% confidence intervals: Cy € [2.6,3.3] and C, € [0.197,0.244]
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Figure 7-2: Degassing rate in free-surface shear flow (a) as measured and (b) compared to our

model (7.19) for different turbulent Froude number Fr% = &/umsg. In (a), a* = a sur‘nfs and

[A(a)]* = [A(a)] e~' u?,. In (b), (- — ) shows our model (7.19) with Cyy = 3.0 and Cy = 0.219

rms*

(R? =0.761). Recalla* =acu>>

rms-*
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Figure 7-3: Degassing rate in free-surface shear flow compared to the fragmentation rate for different
turbulent Froude number Fr% = &/umsg. 2(a) is given by (5.5) with Co = 0.42 (Martinez-Bazan
et al., 1999a). ( ) shows A(a)/Q(a) =1 and (- —-) shows A(a)/Q(a) = 0.251.

7.4 Equilibrium bubble size distributions in degassing-
dominated flow

In the previous section, we first confirmed that the degassing size distribution A(a) follows
(7.19) and elucidated the scaling coeflicients, and second confirmed that degassing is
dominant over fragmentation. As discussed in section 7.2.2, degassing dominance means
that we expect the equilibrium bubble size distribution N (a) to follow (7.12). In Chapter 6
we obtain (6.22) to describe /(a) (per mean free surface area Apg) for super-capillary scale
bubbles in FST. With (7.19) obtained here to describe A(a) in FST, we can now solve (7.12)
for the equilibrium bubble size distribution in degassing-dominated bubble populations,

(ajas)~V3 a<ay
N(a) =Ny {(ajay)™/®  a> a,, DNS-scale Rey , (7.24a)
(ajay)=37/0 a > ay,, Physical Rey
where
No = I(ap)/Ao = Aps [CL C; Cu™ 2793 g3l 67207, (7.24b)

I(a,) comes from (6.22), and Ag comes from (7.19). This applies to large bubbles (a > a.)
where (6.22) is valid.

7.4.1 Measurements in free-surface shear flow

Figure 7-4a shows the bubble size distribution we measure from the free-surface shear
flow simulations, nondimensionalized by the near-surface turbulence characteristic scale
Lt = u}, /. The bubble size distribution is much steeper than § = —10/3 we would
expect for fragmentation-dominated bubble populations. The clear difference between the
simulation results and 8 = —10/3 also excludes the prediction N(a)/Afps « g‘lsz/ 3q10/3

from Yu et al. (2020), which misses the inter-scale energy transfer associated with entrainment
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Figure 7-4: Bubble size distribution in free-surface shear flow compared to (a) the model by Yu
et al. (2020) and (b) our model (7.24) for different turbulent Froude number F: r2T = &/umsg. In (a),
(- —-) shows N(a)/Aps < g~ '&23a=193 In (b), (- — —) shows (7.24) with C; = 3.62, Cyy = 3.0
and Cr, = 0.219 (R? = 0.849), and for the smallest bubbles (- - - - - ) shows N(a) oc a=* from (1.17)
withy = —14/3. Recall a* = a/Ly and [N(a)/Ars]* = [N(a)/AFs] L3T, where Ly = u, /e.
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(see Chapter 6) and does not consider degassing.

Direct measurement of degassing in the previous section showed this flow is degassing
dominated. In figure 7-4b we compare our measured N(a) to (7.24) we predict as the
equilibrium solution to degassing-dominated bubble populations. Without introducing
any additional fitting parameters or modifying previous ones (C; = 3.62 obtained by
direct measurement of /(a) in Chapter 6; Cy = 3.0 and C; = 0.219 obtained by direct
measurement of A(a) in this chapter), we see a strong agreement (R> = 0.849). We note
that, for small bubbles where fragmentation is expected to have some effect (see figure 7-3),
we do see some evidence for the beginning of a shift toward N(a) « a* predicted by
(1.17) for fragmentation-dominated bubble populations with I(a) « a~'*/3 (Gaylo et al.,
2021). Generally, comparing figure 7-4a and figure 7-4b, we conclude that, as expected
based on the ELA measurements of A(a)/Q2(a), N(a) is much better described by the
degassing-dominated model.

7.4.2 Scaling with Froude number

We have derived the equilibrium solution (7.24) for bubble populations in air entraining flow
which dominated by degassing rather than fragmentation and observed this distribution in
DNS of canonical free-surface shear flow, which has been used to model ship wakes. We
now explore the scaling of this bubble size distribution with turbulent Froude number F: r%.

We start by expanding (7.24). Using (6.22), (7.17), and (7.19) we obtain

C(;I g_3”§m581/3 (za)_l7/3 a<aa
N(a)/Ars =2C1C; 1 (3.64)%? g‘23/6vvzv/3ur6msel/3 (2a)™/® 4 > a,, DNS-scale Rey .
(1.98)1/2 g_7/2u?m581/3 (2(1)_37/6 a > ay,, Physical Rey

(7.25)
which shows explicitly how the predicted degassing-dominated bubble size distribution
depends on bubble radius a, gravity g, turbulence strength & and u,,s, and (for DNS-scale
moderate Rey) the viscosity of water v,,. Next, we nondimensionalize (7.25) using the
characteristic length scale Ly = u). /e, [N(a)/Ars]* = [N(a)/AFS]L%, and a* = a/Ly.
Focusing on the large Reyy we expect in large-scale flows like that behind a ship, the
non-dimensional value of a4 is

a =ap/Lr = 0.99 C}Fra. (7.26)
Thus, nondimensionalizing (7.25) for the case of large Rey gives

Cy'FrS (2a*)~177 a* < 0.99C2 Fr2

. 7.27
(1.98)'2Fr] (2a*) 7% a* > 0.99C2 Fr2 (7.27)

[N(a)/AFrs]" =2CLCy {

For the constants we can use C; = 3.62 obtained by direct measurement of /(a) in Chapter 6
and Cy = 3.0 and C; = 0.219 obtained by direct measurement of A(a) in section 7.3. This

141



gives
0.537 Fr$ (2a*)™'" a* <17.2 Fr2

. 7.28
2.23 Fr} 2a*)7V° ot > 172 Fr2 (7.28)

[N(a)/Ars]” = {

We see that the number of bubbles scales with Frg for bubbles in the turbulence-driven
degassing regime and Fr; for bubbles in the buoyancy-drive degassing regime. Compared to,
for example, Yu et al. (2020) who predicted [N(a)/Aps]* « Fr% (@) '8 forall a > a,
we see that, in addition to the bubble size distribution being much steeper, it is significantly
more sensitive to turbulent Froude number.

7.5 Conclusion

We study degassing in air entraining flows, where the total volume of bubbles is increasing.
Through incorporating degassing into the PBE, our goal is to characterize the bubble size
distribution, N(a), including its power-law slope $. In air entraining flow, entrainment is
clearly important, while the other mechanism(s) that balances entrainment determines 3. For
plunging breaking waves at large We, fragmentation is the dominant balancing mechanism,
giving 8 = —10/3 (Garrett et al. 2000; Deane & Stokes 2002, see also §1.3). In contrast,
we find that for FST, specifically a canonical free-surface shear flow (Shen et al., 1999; Yu
et al., 2019), degassing is the dominant balancing mechanism.

From the PBE, we derive metrics to determine the importance of degassing in air entrain-
ing flows. The ratio of degassing flux to entrainment flux, D = Qp/Qy, broadly quantifies
the relevance of degassing. More directly, the ratio of degassing rate to fragmentation rate,
A(a)/Q(a), determines whether degassing or fragmentation is dominant (with (7.5) giving
the critical value of A(a)/Q2(a) where the two are equal). For FST, DNS gives D =~ 0.7 over
a broad range of air entraining Fr?, consistent with degassing being a relevant mechanism;
and A(a)/Q(a) > O(1), indicating that degassing is dominant over fragmentation.

From the PBE, we show that at equilibrium degassing-dominated bubble populations
depend on entrainment /() and degassing rate A(a),

N(a) = I(a)/A(a). (7.12)

Using a simple model of degassing, we derive (7.19) which gives the degassing rate A(a)
in two regimes, separated by a critical radius a4 (7.17). We find a turbulence-driven
regime where A(a) o a and a buoyancy-driven regime where A(a) o« ¢/ for moderate,
DNS-scale bubble Reynolds number Re,. DNS measurements of A(a) confirm this split
power-law scaling and obtain the two scaling coefficients. Based on this A(a) as well as
I(a) from Chapter 6, (7.12) gives that that degassing-dominated N (a) follow a split power
law B(a < ay) = =5.6 and B(a > a,) = —7.16 (for moderate Re,), which is confirmed
independently by DNS. We note that this model can be extended theoretically to large
physical-scale Re;,, where the buoyancy-driven regime becomes A(a) o« a’/? leading to
B =—6.16.

We have identified that it is possible for an air entraining free-surface flow to be degassing
dominated, even at large We when fragmentation is strongest. With ELA we have direct
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access to measure the physical mechanism and can prove degassing dominance through the
metrics D and A(a)/Q2(a). Where such access is not possible, degassing or fragmentation
dominance can be inferred from the size distribution power-law slope(s) 8. For plunging
breaking waves, the wide agreement on 8 = —10/3 (Deike, 2022) suggests that such flows
are generally fragmentation dominated. The free-surface shear flow we consider is one
definitive example of an air entraining flow which is degassing rather than fragmentation
dominated. For another possible example, Hendrickson et al. (2019) reported 8 € [-8, —5]
in the converging-corner-wave regions of the flow behind a dry transom stern, indicative
of the degassing-dominated flows considered here. Because fragmentation-dominated and
degassing-dominated bubble populations give such distinct equilibrium bubble populations,
determining if a flow is fragmentation- or degassing-dominated is critical to understanding
the bubble population.
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Chapter 8

Conclusion

Turbulent, air entraining bubbly flows are a feature of many free-surface flows in nature and
engineering, and predicting the size distribution of bubbles is critical to modeling these
flows. The framework for describing the evolution of the bubble size distribution, N(a), is
the population balance equation (PBE), which has terms describing each of the individual
bubble evolution mechanisms: fragmentation, entrainment, and degassing. We study these
evolution mechanisms in free-surface turbulence (FST), a ubiquitous feature of air entraining
free surfaces. Broadly, the two challenges to predicting N (a) are modeling the near surface
turbulence, and modeling the bubble evolution mechanisms, which depend on the turbulence.
Using DNS of FST, this thesis contributes to the fundamental understanding of both near
surface turbulence and bubble evolution mechanisms. This understanding also informs the
development of models for air entraining FST. We make progress towards a RANS model
for the surface layer and are able to predict a new degassing-dominated regime, which is
confirmed by DNS and distinct from the fragmentation-dominated regime often assumed for
bubbly flow.

We close with a summary of the contributions of this thesis and discussion of the future
research work these contributions point towards.

8.1 Thesis contributions

I Numerical methods for free-surface bubbly flows

Development of ELA, enabling direct measurement of bubble evolution mecha-
nisms in FST (Chapter 3; Gaylo et al. 2022)

A previous barrier to understanding the individual bubble evolution mechanisms near air
entraining free surfaces was the difficulty in measuring the mechanisms directly. For
example, a previous dataset on entrainment had only 108 entrainment events (Wei et al.,
2019). Because every mechanism affects N(a), attempts to infer an individual mechanism
from only the behavior of N(a) requires assumptions about all other mechanisms. Incorrect
assumptions have led to incorrect conclusions about evolution mechanisms (Yu et al., 2020).
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Bubble tracking enables direct measurement of the evolution mechanisms, but previous
Lagrangian methods (Chan et al., 2021a; Gao et al., 2021; Basak et al., 2026) struggle
near air entraining free surfaces, where bubble evolution is complex. Instead, we develop
Eulerian label advection (ELA) which uses the flow field available from DNS to track the
movement of air. This gives robust bubble tracking, independent of the complexity of the
bubble evolution. Numerically, ELA is built upon cVOF (Weymouth & Yue, 2010) in a way
that maintains volume conservation and minimizes computational cost.

ELA enables us to, for the first time, directly measure individual bubble evolution
mechanisms near air entraining free surfaces in DNS. This allows us to obtain huge datasets
for each evolution mechanism. For example, analysis of entrainment in Chapter 6 is based on
60, 000 entrainment events. These datasets allow detailed characterization of the statistics of
each mechanism, particularly the scaling with bubble size and Froude number.

II Describing turbulence near air entraining free surfaces

Identification of the critical Froude number to obtain strong FST (Chapter 4; Gaylo
& Yue 2025)

Yu et al. (2019) identify that for sufficient Froude number near-surface turbulence becomes
isotropic, the defining feature of strong FST. In this work we determine a robust definition
of a near-surface turbulent Froude number (squared), Fr% = &/urmsg, based on turbulence
statistics £ and u;y,g measured at the bottom of the surface layer. DNS measurements
of turbulence isotropy across a range of Fr% show the transition to strong FST occurs at
Fr% ~ 0.1. For Fr% > 0.1, near-surface turbulence is nearly perfectly isotropic (isotropy
parameter J = 0.95), independent of any further change in Fr%.

Characterizing the surface layer in strong FST (Chapter 4)

Brocchini & Peregrine (2001b) define the surface layer as the region where air and water are
highly mixed and note the difficulty in modeling it. We develop a definition of the surface
layer thickness ¢ based on the vertical derivative of the average fraction of water, 7y, at the

mean free-surface height 7,
-1
5= 0 [ , (4.6)
z=n

Vor | dz

Unlike previous definitions (Brocchini & Peregrine, 20015; Hendrickson & Yue, 2019), this
does not depend on the tail behavior of the y distribution. The surface layer thickness defines
a nondimensional depth, z* = (z —177)/d,. Scaling by z* collapses the distribution of -y across
a wide range of Fr%. The distribution follows logistic tail behavior, rather than Gaussian.
Relevant turbulence statistics within the surface layer (z* € [—0.5,0.5]) also collapse with
Z" when appropriately nondimensionalized by u,ns and & measured at the bottom of the
surface layer (z* = —0.5). Particularly relevant to turbulence modeling, we show that there
is no direct effect of the free surface on turbulence beneath the surface layer (z* < —-0.5),
especially for strong FST.
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III Quantifying individual bubble evolution mechanisms in the PBE

Fragmentation — Determining when the memoryless assumption is valid (Chapter 5;
Gaylo et al. 2023)

A central assumption for modeling fragmentation in the PBE is that the probability a bubble
fragments over a given time interval is independent of previous intervals. Physically, we do
not expect this memoryless assumption to be valid for short intervals immediately after the
bubble was formed by previous fragmentation, as the bubble would still be highly distorted.
We elucidate the relaxation timescale 7, = C, £'/3¢%/3, which gives the minimum time
interval where the observed statistics of bubble fragmentation are reasonably consistent with
the memoryless assumption. This informs selection of measurement intervals to ensure
the observed fragmentation statistics are applicable to the PBE. We also find that, for all
super-Hinze scale bubbles, 7, < 1, the typical lifetime of a bubble, showing that the
memoryless assumption in the PBE is valid.

Fragmentation — A new bound on daughter-size distributions (Chapter 5; Gaylo
et al. 2023)

Fragmentation models need to describe the statistics of the daughter bubbles produced
by fragmentation. These are m, the number of daughters; and f;(v*), the probability
distribution function describing the volume ratio of daughter to parent, v*. There is a great
variety of models for these two statistics. Previously, Martinez-Bazén et al. (2010) showed
that volume conservation constrains the relationship between the n = 1 moment of f;;(v*)
and m, as expressed in (5.4).

In fragmentation cascades, the evolution of the bubble population is characterized by the
timescale 7., which gives the average time needed for air starting in the largest bubble to go
through the cascade and reach the Hinze scale (Deike et al., 2016; Qi et al., 2020; Gaylo
et al., 2021). We determine the empirical value of 7. from DNS, and also derive an analytic
expression for 7. in terms of f;;(v*) and . The relationship between empirical value of 7.
and the fragmentations statistics provides a new constraint on the relationship between the
n = 11/9 moment of f;(v*) and m,

1
m(a')/ VI pr 5 aydv = 1= (CrCoe) (5.41)
0

Our estimations of C; and Cg , from DNS give 0.92 for the right side at large We.

Entrainment — Scaling of the large-bubble entrainment size distribution in FST
(Chapter 6; Gaylo & Yue 2025)

We investigate the scaling of entrainment by FST. For strong FST where turbulence is
isotropic (Fr% > (.1), dimensional analysis shows that, for bubbles larger than the capillary
scale (a, = 1.3mm for air-water on Earth), the entrainment size distribution is governed by
a single scaling parameter « and a single scaling constant C;. We develop a mechanistic
model of FST entrainment based on the observation that the minimum radius of curvature
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of the proceeding surface disturbance is similar to the radius of the resulting bubble. This
implies an inter-scale energy transfer that was missed by previous entrainment models (Yu
et al., 2020) and gives @ = —3. This corresponds to an entrainment size distribution (per
unit free surface area)

(a)]Aps = Cr g3 "3 (2a)*3  fora > a.. (6.22)

We perform DNS across a wide range of Fr% of a flow selected to isolate FST entrainment
and a more realistic free-surface shear flow. ELA directly measures /(a) and gives C; ~ 3.62.
Excluding Fr% < 0.1, both flows agree well with our model (R? = 0.990 and 0.891). We
also find evidence of I(a) o a~'#/3 in previous experimental observations of open-channel
flow (Wei et al., 2019). The ubiquity of FST suggests that our model for FST entrainment
can be important to broad classes of air entraining flows.

Degassing — Scaling of the degassing rate in FST (Chapter 7; Gaylo et al. 2024)

To determine the scaling of degassing, we develop a simple model with two regimes separated
by a critical radius a4. For a < a, degassing is driven by turbulence, giving a characteristic
rise velocity U, o« upyg. For a > a, degassing is driven by buoyancy, and we set U, equal
to the terminal rise velocity in quiescent flow, which depends on bubble Reynolds number
Rew. By a mechanistic argument we determine L4, the characteristic depth a bubble is
entrained to. Through A(a) = Us /L4, this model gives the degassing rate

(alap) a<ap
Aa) = Ag {(ajap)’? a > a,, DNS-scale Rey . (7.19a)
(aay)3? a > ay, Physical Rey

From DNS of free-surface shear flow at a wide range of Fr%, ELA measures A(a) and we
determine the two scaling coefficients in our model. Despite the simplicity of our degassing
model, we see a good agreement with the numerical results (R? = 0.761).

IV Advancements in modeling free-surface bubbly flow
Progress towards a model of near-surface turbulence for use in RANS (Chapter 4)

We observe that the direct effects of the free surface are restricted to the surface layer and
that the surface layer is well characterized by (only) the turbulence properties at its bottom.
This shows that, rather than attempting to model k and € within the surface layer, a RANS
simulation could simply apply an appropriate boundary condition at the bottom edge of the
surface layer. Towards implementation of this approach, we characterize the two quantities
necessary for such a boundary condition in k-& RANS: the surface layer thickness,

6y =Csu’ g™ (4.35)
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and the energy flux into the surface layer,
W/pw = (Cw/Cs) € 6. (4.36)

DNS measurements give Cs ~ 11.1 and Cy ~ 4.6. Cy/Cs ~ 1/2 is consistent with the
observation that the turbulent dissipation rate (per unit mass) is roughly constant within the
surface layer.

A distinct equilibrium solution for bubble populations dominated by degassing,
like in FST (Chapter 7; Gaylo et al. 2024)

For bubble populations dominated by fragmentation, N(a) o« a~'%3 is the equilibrium

solution (Garrett et al., 2000). This power law is often observed in plunging breaking waves
for super Hinze-scale bubbles (Deane & Stokes, 2002; Deike et al., 2016). From DNS
of free-surface shear flow at a wide range or Fr%, we compare the degassing rate A(a) to
fragmentation rate 2(a). We identify that A(a) > Q(a), meaning degassing is dominant,
rather than fragmentation. For bubble populations dominated by degassing, we show the
equilibrium solution is

N(a) ~ I(a)/A(a) . (7.12)

With the degassing rate A(a) and the entrainment size distribution /(a) we obtained based
on ELA, this allows us to predict the bubble size distribution. Without any additional fitting
parameters, our prediction agrees very well with the N (a) we measure (independent of ELA)
in DNS (R? = 0.849).

For large-scale flows (very large Reynolds numbers), degassing-dominance predicts a
bubble size distribution (nondimensionalized by the turbulence length scale Ly = u},./€)

0.537 Fr$ (2a*)™'" a* <172 Fr2

, 7.28
2.23 Fr} 2a*)7° a* > 172 Fr2 (7.28)

[N(a)/AFs]” = {

which applies to bubbles larger than the capillary scale (a > a.). For the scaling with
bubble radius a, we see a split distribution, and in both regimes the power-law slope is more
negative (i.e., there are fewer large bubbles) than N (a) « a~'9/3. We also see that the bubble
population is incredibly sensitive to Froude number; in the turbulence-driven degassing
regime N (a) scales with Fr(;, and is even more sensitive in the buoyancy-driven degassing
regime.

As an illustration of the insight provided by this new equilibrium solution, we consider
the flow behind the transom stern of a vessel, which the canonical free-surface shear flow
models. Previous work (Yu ef al., 2020) predicted that N (a) scales with Fr%, meaning that
when the speed of the vessel doubles, the number of bubbles increases by a factor of 4. We
show the bubble population actually scales with Fi r?, meaning that when the speed of the
vessel doubles, the number of bubbles increases by a factor of 64.
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8.2 Future work

Implementation of the surface-layer model in RANS

Our DNS measurements of FST suggest that the effects of an air entraining free surface on
turbulence could be modeled in RANS using a boundary condition applied at the bottom
edge of the surface layer. For the forced FST setup, where turbulence levels deep beneath the
surface are prescribed and mean values are only a function of z, it would be straight forward
to solve the k-& RANS equations with our proposed boundary condition and compare the
predicted k and & to the DNS results in Chapter 4. For a flow which includes realistic
turbulence production, our DNS of free-surface shear flow provides a useful reference to test
a RANS model against.

Elucidating the scaling of small-bubble entrainment by FST

Our entrainment model predicts I(a) o« a~'#/3 for bubbles larger than the capillary scale.

This scaling cannot apply to arbitrarily small bubbles, as that would imply an infinite
entrainment flux, Q; = (47/3) f I(a)a® da. To predict the entrainment flux, the scaling of
the entrainment size distribution for bubbles smaller than the capillary scale is necessary.
In theory the mechanistic model developed in Chapter 6 could be extended to include
surface tension; however, the relationship between turbulence and bubble scales becomes
multi-valued, suggesting a more complicated inter-scale energy exchange.

Describing the effects of coalescence

For small and moderate void fractions with significant space between bubbles, the effect
of coalescence on the bubble population is negligible. However, our results suggest the
quantity of bubbles scales with Fi r?, meaning the void fraction will increase significantly with
only slightly larger Froude numbers. ELA can quantify coalescence; however, coalescence
involves thin films on scales not resolved by our DNS. Our DNS solver would require explicit
models for coalescence, otherwise the VOF scheme implicitly coalesces any bubbles with
interfaces within a grid cell.

Investigating non-equilibrium regimes

For degassing-dominated bubble populations, we have elucidated the equilibrium (N /0t =
0) solution N(a) = I(a)/A(a). The natural question then is how the bubble population
evolves in non-equilibrium. As noted in Chapter 7 the degassing-dominated PBE is a set of
independent ordinary differential equations. For the simple case where N(a) =0att < 0
and /(a) and A(a) are steady for r > 0,

N(a;1) = [I(a)/A(a)] (1 -7, (8.1)

For non-steady /(a) or A(a), or non-negligible fragmentation the evolution is more complex.
The evolution of the total entrained volume, dV /dr given by (1.8), is also of interest, but
requires the entrainment flux Q;, which requires the scaling of small-bubble entrainment.
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Appendix A

Stability of the Viscous Diffusion Term
with Arithmetic-Mean Viscosity

For single-phase flows the stability of the viscous diffusion term leads to a timestep restriction

At < éRe min [Axg]? (p/w) (2.11)

Tryggvason et al. (2011, §3.1). For multi-phase flows, this appendix addresses the appropriate
value to use for p/pu.

The appropriate value for p/u is closely tied to the methods used to interpolate density p
and viscosity u from the pressure and VOF grid where they are explicitly defined by (2.15),
to calculations on the velocity grid. In this section we will use the u-grid as an example, and
by swamping indices the equations can be trivially modified to apply to the v- and w-grids.
The DNS solver used in this thesis uses

Pijk T Pi+l jk
Pi+1/2jk = R > st (A.1)

for density and the same for viscosity,

Hijk T Hi+l jk
Hisi k= — . (A2)

However, the viscous diffusion term requires additional interpolation,

Mit1/2jk T Hit1/2 j+1k
Miv1)2 j+1/2k = adlly > R (A.3)

(and similar for u;,1/2 j k+1/2). This expression is equivalent to the arithmetic mean (2.17)
discussed in section 2.1.3. The extra interpolation required for viscosity compared to density
is the reason that simply choosing the minimum of p,,/u,, and p,/u, for p/p in (2.11) is
insufficient to guarantee stability.
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A.1 Spatial discretization of the viscous diffusion term

We first review the calculation of the viscous term, as described by Tryggvason et al. (2011,
§3.1). For the u velocity, the viscous diffusion term in (2.5) is

0 1
Eui+1/2jk="'+

(Dx)isjo, g * - - (A.4)
Pi+1/2j k

For a constant grid A = Ax = Ay = Az, the viscous term is given in terms of the stress matrix

Txx — Txx

i+ljk ~ Tijk
(Dx)i+l/2jk =T A
7;');—11/2/41/2]( - Y;izl/Zj—l/Zk
A
Xy Xy
Ti+1/2j k+1/2 Ti+1/2j k-1/2 . (AS)
A
The stress matrix is calculated
1 Uirl)2jk — Ui-1)2jk
T = R—ezﬂi jk A , (A.6a)
1 Uie1/2 j+1k — Uit1 )2k Wil j+1/2k — Wij+1/2k
711')-651/2]‘“/2]( = R Hit1/2j+1/2k ( A + A ) , (A.6b)
) 1 Uie1/2jk+1 —Uix1/2jk  Viel jk+1/2 — Vijk+1/2
Xy _ J J J J
Ti+1/2j k+1/2 R_e:“i+1/2j k+1/2 ( A + A ) , (A.60)

. . Xy
and similar for Ti+1/2]. ke1/2°

A.2 Linear stability analysis

Before addressing the viscous term specifically, we start with a general analysis of the
effects of the temporal discretization. We will consider the evolution of the spatially discrete
u-velocity, u;y1/2 j k (see figure 2-1). In continuous time but discrete space, for linear stability
analysis our interest is the value of C in the linear term that multiplies u;,1/2 ; k.

0
S liH1/25k = Cuppipjr+---. (A7)

Applying the two-stage Runge-Kutta time discretization described in section 2.1.2,

(n+1/2) _ (n)
Uit o i = (LHAIC) w0+ (A.8a)
ui+1/2jk = Eui+l/2jk + (E + ?C ui+l/2jk +.... (A8b)
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Combining these two steps gives

n 1 n
ui ) = |14 MO + 5 (MO |ul], + (A.9)

The linear stability requirement is
1
-2 < (A1C) + 5 (A1C)% <0 (A.10)

The lower bound is always satisfied (i.e., there are no oscillatory linear instabilities).
Expanding the upper bound,
-2 <AtC <0. (A.11)

We now seek the equivalent value of C in (A.4). Because the viscous term is linear, we
assume a solution of the form

ui+1/2,j,k — Uei(Kxi+KZj+Kyk) . (AIZ)

This gives, for example, u;y1/2 41,k = ST /2.j.k- We put (A.12) into (A.5) and, after a
fair bit of algebra, we obtain (A.18) shown on the next page.

The stability criteria for the viscous term can be made looser by applying continuity
(2.8a), which gives us that the velocity field is divergence free. Discretized on the staggered
grid, this gives

Wijt1/2k = Wij-1/2k N Vijk+1/2 7 Vijk=1/2  Wisl)2jk —Ui-1/2k

A.l
A A A A.13)

As shown in (A.19), this simplifies the third and fourth lines of (A.18) into a term which
partially cancels a term in the first line of (A.18). Finally, we obtain (A.20), shown on the
next page.

A.2.1 Single-phase stability criteria

To check (A.20), we start by considering the case where u and p are constant throughout the
domain. In this case, we expect to obtain (2.11). For constant u and p, (A.20) simplifies to

{2 [cosky — 1] +2 [cosk, — 1] +2 [cosky — 1|} 10k - (A14)

__H
(Dx)i+1/2jk - @

The most unstable mode is k, = k, = k, = m, which gives

u
(Dx)ivip2jk = _12@ui+1/2jk- (A.15)

Recalling that we also divide by p in (A.4), we obtain

12
— v,
ReA?

(A.16)
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where v = u/p. Putting this value of C into (A.11) we obtain,

1
msg&A%”, (A.17)

which, as expected, is equivalent to (2.11).

A.2.2 Multi-phase stability criteria

We now consider the same most unstable mode («, = k; = k, = 7), but now for a multi-phase
flow where  and p change across cells. Grouping the terms of (Dy )12 j x that multiply
Uir1/2,j.k> (A.20) becomes

L (St ettt i o i o
_ Miv1/2 j kY Hi1/2 j+1 kH-iv1/2 j—1 kH-i+1/2 j k+1FH-i+1/2 j k=1
(Dx)i+1/2jk = _R_e { AZ Uiv1 )2kt (A.21)

To make this similar to (A.15), we can define an effective dynamic viscosity

- SUiv1/2jk F Mis1)2 j41k + Mix1/2 j—1k + MHiv1/2 j k+1 + Mis1/2 ) k-1
Hiv12jk = ' ' D ' , (A.22)

and write _
Hit1/2jk
(Dx)is1j2jk = —IZW

Following the same steps as the single-phase criteria, we obtain

Uir1/2jk +.... (A23)

1
At < < Re AL, (A.24)

where the effective (kinematic) viscosity for the u-grid is defined

. 2
Vitl/2jk = 3

ﬂi+1/2jk] N 1 l,ui+1/2j+1k t Uiv1)2 -1k T Hiv1/2j k+1 T Mit1/2j k=1
12

Pi+1/2j k 12 Pi+1/2jk
(A.25)

Equivalent definitions for v; ;11,2 and ; j x+1/2 can be obtained by swapping indices.

A.3 Bounding effective viscosity

Before seeking the maximum possible value of ¥, we illustrate that it could be larger than
the v = u/p of either individual fluid. Consider an interface which is normal to z. The VOF
field is



Using (2.15), we obtain (nondimensionalized) density and viscosity

_jr j=1 yn j =1
Pijk = 1 j<1, Mijk = 1 ]<1
Using (A.25) we obtain
(n/2) Jj=2

S/ +5(1/) j=1
D/ +5Mm/1) j=0
(1/1) j<-1

Visl2jk =

For air-water (4 = 0.00123, n = 0.0159), this corresponds to v;412 jx = 80 at j = 1, much
larger than either v = A/np = 13 in air or v = 1 in water. As discovered by Matthew Coogan
(personal communication, October 2025), DNS of a nearly quiescent air-water free surface
confirms that, if one uses ¥ ~ 1/n in (A.24) there is a numerical instability and, as expected,
the u velocity in the first cell of air above the interface grows exponentially.

As illustrated in the example, the viscosity in j + 1 and k£ + 1 cells are not necessarily
related to the density in the cell at j k. This means that in general the second term in (A.25)
can, at best, be bounded by

1 . . + . . + . 1+ . . 1 1’
1| Birry2 -1k F Biv1j2 41k + His1 /2 k-1 ,Uz+l/2]k+1] <_max[ 7] (A26)

12 Pir1)2)k ~ 3min[1,1]

For the first term, the fact that the same interpolation is used for w1/ j x as p;+1/2 j k does
mean their quotient is bounded between the u/p of each individual fluid. In summary,
(A.25) can be bounded by

.2 n 1 max [1,7]
7 < 3max[l,/l]+3min[l’/l] . (A27)
A.4 Implementation options
Applying (A.27) to (A.24), one obtains a timestep restriction
1 (2 n1  1max[1,7])\”"
Ar < 2 ReA (3max[1,ﬁ]+3min[l’ﬂ]) . (A.28)

For air and water where 7 < 1, this condition is about 20 times more restrictive compared
to (incorrectly) using ¥ ~ n/4 in (A.24). For many of the simulations in this thesis, this
would make (A.28) the most restrictive timestep criteria, more restrictive than (2.13) driven
by CVOF.

In practice, it is common to apply some smoothing to the VOF field before calculating p
and u (e.g., Tryggvason et al., 2011, §7.1.4), which decreases the sharp changes in u that
make such large ¥ possible. In theory one could determine how smoothing links viscosity in
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adjacent cells and derive a tighter bound on ¥ for when smoothing is used. Alternatively,
one could calculate the true maximum value of v before each timestep using (A.25) (and
similar equations for ¥; ;1,2 and ¥; j x4+1/2), and apply the dynamic timestep restriction

1
At < = Re A? (max [7])7! . (A.29)
For a third approach, we first note that due to smoothing of the VOF field as well as
turbulence (physically) smoothing the VOF field, in many simulations it is rare to see the

strong viscosity gradients that lead to ¥ > max|[1,7/1]. While not guaranteed to be stable,
in practice one could use a safety factor FS and set

1
At < = Re A? (FS max[1,7/4])7" . (A.30)

The simulations in this thesis use FS = 1 (i.e., no safety factor), and only rarely become
unstable. However, in general the author suggests using (A.29).
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Appendix B

Approximating Long Snapshot Intervals
using Volume Tracking Matrix
Multiplication

As introduced in §3.2.1, the volume tracking matrix (VTM) A=m+D) degeribes the movement
of air between bubbles with volumes v" at time ¢ and bubbles with volumes v**! at time
= Aty

Vn+1 — A(n—>n+1)vn , (311)

where At is the snapshot interval. The VTM is obtained from the vector color function ¢”,
which is evolved using ELA, a method to solve
oc”
ot

+u-Ve"'=0 (3.2)

in the discrete form
/9% c'(x,t) dV
st (1) = — . (3.19)
Wk AQjjk
While we do not find the memory or computational cost of ELA prohibitive in practice, in
this appendix we discuss matrix multiplication as a way to, if desired, decrease the cost with
a trade off in accuracy.

B.1 Memory cost of Eulerian label advection

While there is limited additional computational effort required for ELA due to the reuse of
the flux information from cVOF (see §3.4.2), there is a memory cost related to storing the
source vector 8. s is generally very sparse, so rather than attempting to store the entire
length for each cell, we store the index and value {¢, s} of each non-zero entry of s” in a cell.
The same approach applies to storing ¢ during advection (see (3.25)). Thus, the memory
cost scales with the number of non-zero entries in each cell, nnz[s?j k].

To bound nnz[s:?j. .]» we first note the total size of sZ’i . 1s equal to the number of bubbles
at 1", M". Assuming the CCL method used will not generate more than one label per

159



N

Eq. (3.13)
o A(ﬁ—i n¥l) A (n+1-n+2) A({:J—Z; n+3)
A A N

Eq. (3. 40)/ N N ™
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At
— Al
< > At cff.

Figure B-1: Illustration of the flow of information using ELA and matrix multiplication with K = 8
and N = 3. After using ELA over K simulation time steps, the information in s” is summarized in a
VTM using (3.40). The information in N of these VIMs is summarized in an effective VIM using
(3.13).

cell and noting that the Courant restriction limits advection of s” to immediate neighbors
each simulation time step At, over a snapshot interval involving K simulations time steps,
Aty = KAt,

nnz(sf,) < min {(1+2K)", M"}, (B.1)

where ./ is the dimensions of the simulation. Although the scaling in our simulations is less
(Gaylo et al., 2022, Fig. 12), the upper bound suggests that memory requirements scale with
K3, or At?, for a three-dimensional simulation. Because numerical limits (see §3.5.3) as
well as physical reasons (see §5.6) typically impose a minimum desirable value of Az, there
may be a desire to approximate long At¢; without increasing K, which can be done through
VTM multiplication.

B.2 Source of error with VTM multiplication

As mentioned in §3.2.1, the left-stochastic nature of the VTM means that over N snapshot

intervals,
n
Vn+N — l—[ A(m—>m+1) V" (3.12)
m=n+N-1
Which defines an effective VIM
(n—>n+N) n A(m—>m+1) (313)
m=n+N-1
with an effective snapshot interval At .. = NAt,. Therefore,
Atser. = NKAL. (B.2)

With At constrained by the DNS solver, the effective snapshot interval can be adjusted
through the true snapshot interval during the simulation (K) or through multiplying the
matrices in post-processing (N), as illustrated in figure B-1.
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0 T oT
Figure B-2: Illustration of two bubbles at r = 0 whose dark fluid briefly coalesces into one bubble at

t = T but then fragments along the boundary between the two original bubbles such that at ¢ = T all
of the volume from one original bubble is in only one of the final bubbles.

Although the effective VTM describes the same transition from v" to v**", we note that

there is a loss of information when using matrix multiplication versus a larger K. Through
the vector color function ¢”, the source of each particle of air is known. However, when
A is calculated using (3.5), we integrate ¢ over the volume of each bubble, losing the
spatial distribution of ¢" within the bubble. In effect, matrix multiplication assumes that
after each true snapshot interval At,, ¢” is homogeneous within a bubble, increasing the
apparent entropy. This is consistent with the stochastic interpretation of the VTM: it provides
a probability given only that a particle is within a bubble, not the specific location of the
particle within the bubble. However, this implied diffusion is inconsistent with (3.2), which
comes from the VIM providing less information than s”. A result of this loss of information
is that effective VTMs depend on N and are thus not unique.

As an example, consider the case illustrated in figure B-2. Two bubbles of equal volumes
v, = v| briefly coalesce at # = T to form a single bubble of volume v’l1+1 =vi+vy. Att =2T
the single bubble fragments along the original boundary such that no dark fluid was mixed.
Here we consider connectedness provided by CCL a given but note that such an event could
be either physical or spurious, as the connectedness accuracy for closely passing bubbles
depends on the CCL method and its parameters (Chan et al., 2021a). First, consider the case

where At = 2T. Eulerian volume tracking produces the correct VIM:

1 0
(0-2T) _
A = [0 1] . (B.3)

Even if this were a spurious event, ELA with Az; > 2T would correctly identify no exchange
of volume and no cycles. Second, consider the case where Aty = T, with N = 2 to get
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T= Ats/tb N = Ats,eff./Ats Teff. = Ats,eff./tb

Case Lb 0.1000 1 0.1000
Case S1 0.0500 2 0.1000
Case S2 0.0250 4 0.1000
Case S3 0.0125 8 0.1000
Case S4 0.0063 16 0.1000
Case S5 0.0031 32 0.1000
Case S6 0.0016 64 0.1000

Table B-1: Summary of how we apply matrix multiplication to the simulations from table 3-1 to
obtain the same effective snapshot intervals.

Ats’eﬂ: = 2T:

~(0—21) _[0.5 _10.5 0.5

A B [0.5} [1 1] B [0.5 0.5] ' (B.4)
While A= still satisfies (3.11), the loss of spatial information when the vector color

function is collapsed into a VIM at t = T creates a more diffuse tracking matrix. This loss
of information means that there is no reliable way to decrease the diffusive error apart from
decreasing N or introducing more information. Keeping N constant, one would have to
make assumptions about the underlying flow to determine a likely evolutionary path from
the possible events present in the diffuse effective VTM. This is equivalent to a (only slightly
more constrained) Lagrangian tracking approach and would have the same challenges.

We note that, based on the interpretation of the VIM as a graph (see §3.3.2), it can be
shown that for the special case where A (or a connected component of it) found using N > 1
has no cycles, it must be equal to the tracking matrix A’ (or a corresponding connected
component of it) found using a larger true snapshot interval and no multiplication over the
same time period (K’ = NK).

B.3 Performance of matrix multiplication

To study the effects of approximating long snapshot intervals through matrix multiplication,
we use otherwise identical simulations with different Az, shown in table 3-1. We then
multiply the resulting VTMs using (3.13) to achieve the same Az, .. /1, = 0.1 (see table B-1).
Defining n’ to index the effective snapshot interval, i.e., M= 4 At eft., €ach simulation
and subsequent matrix multiplication generates VTMs describing

n'+1 — A(”/—)”/‘Fl)vn’

\ (B.5)

For case Lb, (Afy)Ly = (Atsef.)Lb, SO N0 matrix multiplication is necessary and we use (A)rp
as a reference. The difference introduced by matrix multiplication for the other snapshot
interval cases (Case S1, Case S2, etc.) is

D(n’—>n/+1) = A(n'—>n’+l) _ [A(n’—>n’+l)]

CaseLb ° (B6)
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Figure B-3: The average normalized volume conservation error due to matrix multiplication, £, for
HIT simulations with different true snapshot intervals Aty but the same effective snapshot interval
Atg ofr. = NAtg (see table B-1).

. ’ ’ . ’ .

For analysis, we remove columns of D ="+1 and entries of v*' relating to under-resolved
’

parent bubbles, V! < Vies.

We first confirm that matrix multiplication is volume conservative. The normalized
volume conservation error for each case is

~(n'—-n'+1) ’
HA( )Vn — +1

1

v

By subtracting the error from Case Lb, we obtain the volume conservation error due to
matrix multiplication only:

(El)n' — ||D(n,_)n/+l)vnl||l

, (B.7)
v+l

Figure B-3 shows the average E| error for the early and late time period normalized by
the number of matrix multiplication operations N. The O(10~!%) normalized error for all
simulations shows that matrix multiplication is volume conservative to machine precision.

While matrix multiplication is volume conservative, as discussed in §B.2, there is a loss
of accuracy. To quantify this, we examine how individual columns of the VTM differ due
to matrix multiplication. Based on D" = {(d; j)”/}, we define the average difference per
column for each matrix

o1 ,

()" =5 2" B3)
! J

Noting that (by volume conservation) }’; d;; = 0 and that for any VIM }’; a;; = 1, we see

that the factor of 1/2 guarantees (Ez)", € [0, 1]. Figure B-4 shows that the trend of the
growth of the average E; error for both the early and late time periods behaves similarly
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Figure B-4: The growth of the average E, error with N for HIT simulations with different true
snapshot intervals Azg but the same effective snapshot interval At = NAft; (see table B-1).
Values are normalized by the value for N = 16 (case S4): ((E2),/)s4 = 0.029 for the early and
((E2)n’)sa = 0.079 for the late interval.

with changing N, apart from a scaling coefficient. For N > 1, E, exhibits approximately
logarithmic growth. Although the similar behavior between early and later time periods
suggests this logarithmic growth is independent to the complexity of the flow; we caution that
this could also potentially depend on the type of CCL method used and the Az ¢ chosen,
which we do investigate here. If logarithmic growth is generally true, it would mean that
large Ns, and therefore small K's, can be used with only moderate loss of accuracy.

In Gaylo et al. (2022) there is additional analysis on how smaller K reduce max{nnz(s")},
the largest number of non-zero entry in any single cell anytime during the entire simulation.
In the implementation of ELA used for that work, ELA!, memory was pre-allocated equally
among grid cells to store 8", so the memory requirement scaled with max{nnz(s”)}. We now
have a better implementation of ELA, f1exELAZ, which uses dynamic memory allocation
to store s”, so the memory requirement scales with the average (nnz(s")) rather than the
maximum. In our experience, this newer implementation eliminates memory as a significant
barrier to using ELA.

1https ://github.com/dgaylo/ELA
Zhttps://github. com/dgaylo/flexELA
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Appendix C

Proof of Eulerian Label Advection
Volume Conservation

Using an approach based on the proof of cVOF volume conservation by Weymouth & Yue
(2010), this appendix proves that the Courant restriction

N
NZ;

where C = 1/2 guarantees that there is no over- or under-filling of the vector source fraction
field, i.e.,

<C (2.13)

Uq
Axd

0< (s <1, (3.33)

for any component / at any step d = 1. .../ of the operator-split advection. We have shown
that the flux terms are conservative and the dilation terms sum to zero (see §3.4.2), so
this proof of no over or under filling proves that ELA is volume conservative to machine
precision.

C.1 Mathematical proof

cVOF with C < 1/2 guarantees (¥ < 1 (Weymouth & Yue, 2010). By construction,
ELA satisfies the consistency requirement, so (3.28) is always true and therefore C < 1/2
guarantees

D@ <1 (C.1)
l

for any step d. Thus, at any step d, it is impossible for a component (sz)(d) > 1 without at
least one other component (sl)(d) < 0. This means that proving no under-filling,

0< (s, (C.2)

is sufficient to prove (3.33). It would also be sufficient to prove no over-filling, but we find
proving no under-filling is the easier path.
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To prove (C.2), for each operator-split step we consider the six possible combinations of
the magnitude and sign of the velocity on the positive (u#,) and negative (u;) side of the cell:

(@) up 2u; >0 ©) u >0>u (e) 0>u; > u,
®) u; >u>0 (d) u; > 0> u, ) 0> u, >u

Case (e) is symmetric with case (a) and case (f) is symmetric with case (b). This leaves
proving that cases a—d cannot under fill. For convenience we scale the velocities and fluxes
to local Courant numbers,

At
"mu—o C3

u qud (C.3a)

At
F=F—. C.3b
NG (C.3b)

Thus, (3.25) becomes

s sV =F | —F,+8Au, for del..n, (C.4)

where Au’, = u; — uj. Substituting in (3.30) and (3.31) and introducing absolute values to
illustrate the sign of each term,

case (a) : sgld) - sgd_l) =— §Eid_1) Fé+1/2 + §Ei_11) F;_l/z +§£10)E |Au&| , (C.5a)

case (b): sy —s{ TV = =8V 18V F | - 802 A . (C5b)

case (¢) : sild) - sild_l) = - §£ld_1) Fc,l+1/2 - §§ld_l) F:i—l/z + §EIO)Z’ |Au; ,  (C.5¢0)

case (@): sy =i =YV | 8V | | 8P [Aug] €5y
Dropping the positive terms gives the inequalities,

case (a) : sfld) - sc(ld_l) > §fid_l)F[’1+l/2, (C.6a)

case (b) : siid) - sild_l) > §£ld_1)F;,+l/2 + §£10)E (), —uj) , (C.6b)

case (¢) : séd) - sgd_l) > §£ld_])AF[’J, (C.60)

case (d): s\ —s\V >80z (ul —u) (C.6d)

where AF), = F), | 0= F s Because the fluxes in ELA are calculated using up winding,

the negative terms we are interested in depend on §; and not the value in neighboring cells
(84-1 or 8441). Thus, as all values of s and § are for the cell of interest, not its neighbors, we
will drop the subscript index.
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Cases (a) and (c)

We start by considering case (a) and case (c). For these cases, cVOF ensures (Weymouth &
Yue, 2010)
’ ’ d-1
Fllop AFy 2 =10 (C.7)

Thus, both (C.6a) and (C.6¢) can be written as a looser bound
case (a), (¢) : s@) _gld=l) > —§(d_l)f(d_1) . (C.8)
Using (3.28), we can rewrite (3.29), the definition of §, to give
s(d=1) — g(d=1) fd-1) (C.9)
Substituting into (C.8), we have
case (a), (c) : s >0. (C.10)

This shows that (C.7), which is guaranteed by cVOF for C < 1/2, also guarantees case (a)
and case (c) cannot under fill.

Cases (b) and (d) without dilation

For case (b) and (d), we start with ¢ = 0 (corresponding to f 0 <1 /2). For case (b), (C.6b)
with ¢ = 0 reduces to (C.6a). As (C.7) also applies to case (b) (Weymouth & Yue, 2010),
the previous proof for case (a) applies to case (b) with ¢ = 0 and we obtain

case (b) with¢ =0 : s >0. (C.11)
For case (d), (C.6d) with ¢ = 0 reduces to
case (d) with¢ =0: s@ > gld=l) (C.12)

As case (d) with ¢ = 0 can only increase each component of s between steps, it cannot lead
to under filling.

Cases (d) with dilation

This leaves us with case (b) and (d) with ¢ = 1. These cases are challenging as we must
ensure the dilation term, which is based on s(?, does not subtract more than is present in
s(=D_ For case (d) we note that ¢ = 1 means that f© > 1/2. Thus, (C.9) provides the
inequality

§© < 25 (C.13)

This allows us to write (C.6d) as a looser bound

case () withc=1:  s@ -5 D > 260 () —y1) . (C.14)
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We need to ensure successive operations cannot under fill, so we sum this expression over
d < W operations,

d
case () withe=1:  s@>s0|1+2 Z min(Au,,0) | , (C.15)
d’=1

Thus, to ensure s > 0 we require
z 1
Z min(Au,,0) > —~ . (C.16)
2
d=1
Recalling that Zg’; ! Au; = 0 for a divergence-free flow, (C.16) is true for the Courant

condition P
C=>lu) <>, (C.17)
d=1

N | —

recovering (2.13).

Cases (b) with dilation

We now consider case (b) with ¢ = 1. For case (b) (in addition to (C.7)) cVOF with C < 1/2
ensures (Weymouth & Yue, 2010)

Fc’l+1/2’AF[’1 > —u, . (C.18)
This allows us to rewrite (C.6b) as a looser bound
case W withe=1: s gD > gld=Uy 1 3O (1 1) (C.19)

For each component / of the vector equation, it is now necessary to further split case (b) into
case (b.i), (8)© < (8,)"V and case (b.ii), (5,)? > ()¢ D. Recalling u; > u, > 0 for
both, this allows us to write

case (bi)withe=1:  (s) @ = (5D > —(5)) V] (C.20a)
case (bii) withe=1: (5@ = (sp) @V > =(5) V). (C.20b)

Starting with case (b.ii), we use (C.13) to write
case (b.ii) with & = 1 : (s0) @ = (s > ~2(s) Ou) . (C.21)

As with case (d), we sum over d < // and obtain
d
case (b.ii) with¢ =1 : (s) D > (s [1 -2 Z |u’d,|] , (C.22)
d'=1
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Figure C-1: Normalized L volume-conservation error for (a) cVOF and (b) ELA as a function of
the cVOF Courant restriction C.

b

where, to ensure the symmetric case (f) is also captured, |u’d| = max (|u;

u;|) Thus, for
(s) @ >0, we require

d
123 || > 0. (C.23)
d’=1

which is always satisfied given the Courant condition C < 1/2.
This leaves case (b.i). Using (C.9), (C.20a) can be rewritten

T (d) @l __"
case (b.i) with¢ =1 : (s)'” = (s7) [1 f(d_l)] . (C.24)

Thus we require £V > |uy| for (sl)(d) > 0. The absolute value sign is introduced to
ensure symmetry with case (f). Rewriting (2.40) for ¢ = 1 in terms of the scaled velocities
and fluxes gives

fD = DL AF) + (ul, - u)) (C.25)

Using (C.18), f(@ > fd=1) _ u;. Summing (C.25) over d — 1 < ./ — 1 and recalling we
are interested in f ) > 1/2, it can be shown cVOF guarantees the bound

Y9V >12-C+uy . (C.26)

Thus f(d‘l) > |u:1| and therefore s(@ > 0 is true if C < 1/2, the same condition as (2.13).

C.2 Numerical validation

To validate the Courant restriction, we repeat the three-dimensional bubble fragmentation in
HIT from §3.5 with a snapshot interval equal to simulation time step (Az; = Ar), without
using (3.35), with a zero-threshold value € = 1073, and with a coarser grid of 1283. Rather
than C = 1/2, we repeat the simulation with a range of C. Although At is chosen dynamically
based on (2.13) as well as numerical stability criteria (Campbell, 2014), we find that for
these simulations (2.13) is the most restrictive condition.
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The volume-error for this simulation over the time range 0 < ¢/1;, < 2 as a function of C
is shown in figure C-1. Note that an O(¢€) error is expected for cVOF due to the filter (2.43).
We see that cVOF is volume conservative for C as large as 0.8 and that ELA is also volume
conservative over a similar range. Due to the way inequalities are simplified, it is not a
surprise that the observed limit on C is larger than the theoretical one derived by Weymouth
& Yue (2010) for cVOF and here for ELA. However, it is not clear how a larger theoretical
limit could be proven for cVOF, let alone ELA. The larger observed limit may be due to the
specific nature of the HIT flow we consider and may not be general, where the cVOF and
ELA proofs only assume the flow is divergence free.
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Appendix D

Correlations Between Density
Fluctuations and Turbulence in Strong
FST

In section 4.5.2 we consider the Reynolds stress term due to density in the momentum
equation, p’'ww, and decompose it into three terms,

p'ww = ppww + ppww + pww, (4.25)

corresponding to the effects of the free surface, bubbles, and droplets respectively. In this
appendix we consider the Pearson’s correlation coefficient

Pry = E[XY] - E[X] E[Y] | oD

JEIX?] - (B[X])*E[Y?] - (E[Y])?

which describe the covariance between X and Y normalized such that Pxy € [—1, 1]. Here
X will be the density fluctuations (p’, pg, etc.) and Y the strength of the vertical fluctuations
(ww).

We start by deriving an expression for P ,,,,. First, we can define a fluctuation in the
color function, ¢’ = ¢ — ¢. Recalling that y = ¢, we can rewrite (4.23) as

o =Apc, (D.2)

Multiplying a variable by a constant does not change the Pearson’s correlation coefficient, so
Py sow = Per . Canceling terms in (D.1) where ¢’ = 0, we obtain

c’'ww

Pp',ww =

\/c’c’ \/wwww —ww? .

We can further simplify this expression because ¢ is a Bernoulli random variable, meaning it
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only takes values of 0 or 1. This leads to ¢’c’ = y(1 — ), and finally

c’'ww
Py ww = . (D.3)

V(1 =) Vowww — ww?

The equations for Ppé,ww and Pp’D,ww are similar. Because cp takes values of 0 or —1, we
replace y with —yp:

coww

= B : (D.4)

V=vs(l +vp) Vwwww — ww?

P,

PR ww

For reference, Figure D-1 shows o,,, = Vwwww — ww? from the forced FST simulations
analyzed in Chapter 4.

Figure D-2 shows the correlation coefficients from forced FST simulations analyzed
in Chapter 4, specifically those in the strong FST regime (Fr% > (.1), and we find that all
correlation coefficients collapse well when plotted against z*. As discussed in section 4.5.2,
péww is the dominant term contributing to p'ww, so it is not a surprise that P, ,,,, ~ Ppé,ww.
Beneath z* =~ 0.2, we see that Pp(/),ww < 0. This means that the presence of air (p(’) < 0)is
correlated with ww > ww and the presence of water (o[, > 0) is correlated with ww < ww.
In other words, the magnitude of vertical velocity fluctuations is larger in air than water for
7" < 0.2. For z* > 0.2 this reverses (Pp(r),ww > (), meaning that water is associated with
larger vertical fluctuations. One interpretation is that the presence of water at these large z*
is associated with high energy splashing.

Notably, we find that Py, ~ 0.005 meaning there is not a strong correlation between
the presence of a bubble and magnitude of vertical velocity. This is what one would expect
from a passive scalar, suggesting in these simulations bubble advection by turbulence is
dominant over buoyant rise. For what (small) correlation we do see, the sign (Pp%,ww > 0)
means that the presence of a bubble (p}; < 0) is correlated with a slightly decreased
magnitude of the vertical fluctuations (ww < ww).
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Figure D-1: Standard deviation of ww, o, as a function of depth, normalized by urzms measured at
7" = —0.5 as well as ww measured at each depth for strong FST (FrzT > 0.1, see figure 4-3a for color
legend).
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Figure D-2: Pearson’s correlation coefficients corresponding to Reynolds stress terms in (4.25) for
strong FST (FrZT > 0.1, see figure 4-3a for color legend). Note the difference in horizontal scales.
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Appendix E

Daughter Distributions from Bubble
Fragmentation in Homogeneous
Isotropic Turbulence

0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
v* v* v*
(a) Wep = 101-142, m = 3.37 (b) Weg =50-71,m = 3.19 (c) Weg = 25-36, m = 3.00
5 5
4t 4+

3r 3r

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
v v

(d) Wep = 13-18, m = 2.65 (e) Wep =6.3-8.9,m =2.55

Figure E-1: Measured daughter size distributions f;;(v*) and average number of daughter bubbles
m for different ranges of bubble Weber numbers We g, all measured using T'/t, = 0.4.
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Appendix F

Instability of Horizontal Shear Flow with
a Free Surface and Finite Depth

In this appendix, we extend “Instabilities of a horizontal shear flow with a free surface” by
Longuet-Higgins (1998) to include the effects of finite depth. Our interest is the stability of
the shear flow driven by (6.25), which can be modeled as perturbations from the mean flow

ii(z)/U = 1 —0.9988 sech(0.88137z/L), (F.1)

where the free surface is at z = 0. Longuet-Higgins (1998) argue that, for the purposes of
stability analysis, one can consider a simpler mean flow,

U —-H; <z
i(z) =3Q(Hy+z) -Hy<z<-H;. (F.2)
0 7z < —-Hj

where L = (H| + Hy)/2, Q = U/2L, and h; = H{/L. Longuet-Higgins (1998) shows
h1 = 0.1977 makes the stability characteristics of (F.2) similar to that of (F.1). We extend
the analysis by Longuet-Higgins (1998) to also include a bottom (where the vertical velocity
must be zero) at finite depth —H3 < —H,. This introduces a third parameter h3 = H3/L,
where A3 = 4 in the shear flow simulations described in §6.4.

F.1 Linear dispersion relationship

For perturbations # and w in the lowest layer (z < —H>), Longuet-Higgins (1998) consider

u(z < —Hy) =—c +ik(Eek?)e*~ . (E.3)
w(z < —H») = k(Eek?)el**
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appropriate for infinite depth. For finite depth, we consider

u(z < —Hp) =—c +ik(Ee? — Fe™*%)eikr (F4)

w(z < —Hp) = k(Eek? + Fe7%)eikx

The bottom boundary condition (w = 0 at z = —H3) gives Ee %3 + Fe*s = (. We define
A3 = e 2kHs g express this boundary condition as F = —FE A3 Substituting this into (F.4),

u(z < —Hy) =—c  HkE (¥ + 13¢5k (E.5)

w(z < —Hp) = kE (e — 13e7%%) ek

Now, following the same steps as Longuet-Higgins (1998), we define the velocity
perturbation in the intermediate layer

u(=Hp < z < —H)) =Q(Hy +2) — ¢ +ik(Cek? — De7*?)elk* | (E.6)
w(-Hy < z<—-H)) = k(Cek? + De*%)elkr |

and in the upper layer,

u(z>—Hy) =U — ¢ +ik(Aer* — Be *)eih~ | (E7)
w(z > -H;) = k(Ae** + Beko)eikx |

Applying linearized free-surface boundary conditions (e.g., p = pgn) at z = 0, gives
(U -c¢)’k(A-B)=g(A+B). (E.8)

For z = —H; we specify continuity of velocity w and continuity of (linearized) force
op/ox = p(u — c)Ow/dz — pw dii/dz, which gives the systems of equations

[ (Ae K 4 BekH) = (Ce k1 4 DekH) ]
(U = c)k(Ae™®1 — BekH) = (U - ¢)k(Ce 1 — Dekty — Q(Ce *Hi 4 DekHr)| -
(F.9)
Doing the same for z = —H»>,
(Ce *H2 4 DekHn) = E (e *H2 _ j3eki2)
[(0 — ¢)k(Ce 2 _ pekta) — Q(Ce ™ 1 4 Dekfty = (0 - c)kE(e "2 + AgekHz)] '
(F.10)

We note that finite depth makes the last equation this last equation different than Longuet-
Higgins (1998).
Combining (F.8), (F.9), and (F.8) into a single system of equations, we have

Z*(A - B) = A+B
1A+ B = 4C+D

Z(11A - B) = Z(4L1C-D)+ B4 C+D)|, (F.11)
AC+D = (/12 - /13)E

(Z +q)(12C - D) + B(CAy + D) (Z+q)E(A2 + 13)
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where for clarity we have introduced the following notation:

c—-U
co

Ay = e 2k

9

_ Q
=i o= (/)P Z=—— p=1=: q=Ule.

This is the same as Longuet-Higgins (1998), apart from the second to last and last equation
which now include the effect of A3 # 0. To eliminate E from the system of equations, we
rearrange the second to last equation in (F.11) to obtain

E(ly+13) = (1,C+D)T, (F.12)

where I' = (1, + 43) /(42 — A3). We substitute this into the last equation in (F.11) to obtain

Z*>(A-B) = A+B
/11A+B = 4C+D (F13)
Z(11A - B) = Z(A41C-D)+B(1,C+D) '

(Z+q)(12C-D)+B(CAy + D) (1,C+D)I’

After some algebra, this system of equations can be represented by the matrix equation

(Z2-1) —(Z°+1) 0 0 A
A 1 - -1 B _ 0
VEVA -Z -4 (Z+pB) Z-p cl
0 0 L[(Z+q)T-1)-B] [(Z+q)(1+T) -] (D
(F.14)
Thus, setting the determinant of the matrix to zero gives Z. After some manipulation,
(z*-1) 2 0 0
A1 —(1 + /11) -4 -1 _
0 27 -4 2Z - =0. (E15)
0 0 L[(Z+g)T=1) =Bl (Z+q)(1+D) -8
The result is a fourth order equation of the form
P1Z* 4 p2Z’ + p3Z7 + paZ + ps = 0, (F.16)
which can be solved for Z for a given k. From a Z, the frequency is
w=kc=kco(Z+q). (F.17)

For stability, our interest is how the imaginary part of (nondimensionalized) angular
frequency o = w(L/U) depends on the (nondimensionalized) wave number « = kL, for a
given Fr? = U?/Lg and depth h3 = H3/L. For Fr?> = 5, figure F-1 compares the infinite depth
solution to the finite depth solution for 43 = 4. This deep (k3 > 1) but finite depth removes
the k < 1 instability present for infinite depth, but causes very little change to the x ~ 1
instability. For this branch, we find the unstable wave numbers are k € [0.6653, 1.2302].
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Figure F-1: Frequency Re[o ]| and growth rate Im[ o] as a function of wave number « for 71 = 0.1977,
Fr? =5, and (a) h3 = oo; (b) h3 = 4.

F.2 Results from large Froude number simulations

We now look for evidence of this shear flow instability in the DNS of large Fr. We perform
a simulation at Fr2 = 5 like that described in §6.4, but with the horizontal domain length
increased by a factor of 8/3 to capture possible longer waves. Because the free surface can
be multi-valued, there is not a strictly well-defined definition of the wave height n(x, y)
based on the color function c¢. For an approximation #(x, y), we obtain the correct total
gravitational potential energy if

21
%@JV:/ czdz+722, (F.18)
20

where z( is the bottom of the domain, z; the top of the domain, and c(x, y, z) = 1 in water.
This quadratic equation has two solutions of opposite signs, so we use the integral of ¢ to

guess the appropriate sign:
21
2/ czdz+2}. (F.19)
<0

This always gives the correct 77(x, y) = n(x, y) if the free surface is single valued.

71
fi(x,y) = sign [/ czdz + z0
20

Using (x,y) sampled over ¢t € [40,70], we calculate the two-dimensional energy
spectrum E,, (k), normalized such that /f E,, (k) dk = 1. For analysis, we split the wave
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Figure F-2: Wave spectrum, split into shear-parallel and shear-perpendicular components, for a
free-surface shear flow simulation at Fr? = 5, averaged over ¢ € [40,70]. (- - - -) show the unstable
wave numbers k € [0.6653, 1.2302] from linear analysis and ( ) shows k1 = 27/ Lt associated
with near-surface turbulence.

number space into energy parallel to the shear,

/4
Enp(c) =4 /O Eyp(kcos 6, ksin0)k do, (F.20)

and perpendicular to the shear,

n/2
Epp1 (k) = 4/ E,p(kcosf, ksinf)kdb, (F.21)
n/4

shown in figure F-2. As expected, for long waves (k < 3) there is significantly more energy
in the parallel component than the perpendicular component. We see the majority of this
energy is around wave numbers k = 1-2, nearby the range predicted from linear analysis.
For « > 3, we see the wave spectrum becomes roughly isotropic. All these waves are much
longer than the longest wave number associated with near-surface turbulence, kyr = 27/ Ly
(Lt =~ 0.55L for this simulation).
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Appendix G

Verification of Grid Independence for
Free-surface Shear Flow

Yu et al. (2019) performed a grid convergence study for free-surface shear flow at the same Re
and similar Fr as here, and confirmed turbulence and the bubble population are sufficiently
resolved by the grid described in §6.4.1. In addition, we perform a convergence study of the
entrainment size distribution /(a) and degassing rate A(a) measured by ELA, to confirm
they are sufficiently resolved. We perform a set of 3 simulations at Fr?> = 15 using the same
method described in §6.4.1, but with a finer grid of 576% x 384. This gives As76 ~ 0.018 and
nr/As76 =~ 2.0, versus Asgg =~ 0.027 and 1y /Aszgs =~ 1.3 from §6.4.1. For these simulations,
we include all bubbles of radius larger than a.s = 1.5A576. For t € [40,70], we obtain
e x 10* = 6.1 and sy = 0.074, consistent with Fr? = 15 using Asgs (see table 6-3).

Figure G-1 compares the measured entertainment size distribution /(a), degassing rate
A(a), and bulk bubble size distribution N(a) between the two grid resolutions. These
correspond to figure 6-7a, figure 7-3, and figure 7-4a, and we note that the range of the
horizontal axis has been extended in figure G-1. Because there are only 3 simulations at As7¢
(compared to 6 with A3gs) there is more statistical variability, particularly for larger bubbles
of which fewer are observed in each simulation. From figure G-1, it is clear, especially for
the smallest bubbles where resolution would be a concern, that the results are consistent
between the As7¢ and Asgy grids. We conclude that DNS with the Asgq grid described in
§6.4.1 sufficiently resolves the relevant physics.
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Figure G-1: Entrainment size distribution (a), degassing rate (b), and bubble size distribution (c)
during ¢ € [40,70] for Fr? = 15 with O, Asg4 and O, As76. For consistency, turbulence values from
Asg4 are used for non-dimensionalization and to calculate £(a) and Fr2T =0.12.
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